Файл: Презентация на тему Почему я выбрал направление подготовки "Техносферная безопасность".odt

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 05.12.2023

Просмотров: 163

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
1, разделенный пористой перегородкой (фильтроэлементом) 2 на две полости. В фильтр поступают загрязненные газы, которые очищаются при прохождении фильтроэлемента. Частицы примесей оседают на входной части пористой перегородки, образуя на поверхности перегородки слой 3, и задерживаются в порах. Для вновь поступающих частиц этот слой становится частью фильтровой перегородки, что увеличивает эффективность очистки фильтра и перепад давления на фильтроэлементе.



Рис. 4. Рукавный фильтр: 1 – рукав; 2 – корпус; 3 – выходной патрубок; 4 – блок регенерации; 5 – входной патрубок
Классификация фильтров основана на типе фильтровой перегородки, конструкции фильтра и его назначении, тонкости очистки и др.

По типу перегородки фильтры бывают следующих разновидностей:

  • с зернистыми слоями (неподвижные, свободно насыпанные зернистые материалы, псевдоожиженные слои);

  • гибкими пористыми перегородками (ткани, войлоки, волокнистые маты, губчатая резина, пенополиуретан и др.);

  • полужесткими пористыми перегородками (вязаные и тканые сетки, прессованные спирали и др.);

  • жесткими пористыми перегородками (пористая керамика, пористые металлы и др.).

Наибольшее распространение в промышленности для сухой очистки газовых выбросов получили рукавные фильтры (рис. 4).

Аппараты мокрой очистки газов – мокрые пылеуловители – имеют широкое распространение, так как характеризуются высокой эффективностью очистки от мелкодисперсных пылей с dч > 0,3 мкм, а также возможностью очистки от пыли нагретых и взрывоопасных газов. Однако мокрые пылеуловители обладают рядом недостатков, ограничивающих область их применения:

  • образование в процессе очистки шлама, что требует специальных систем для его переработки;

  • вынос влаги в атмосферу и образование отложений в отводящих газоходах при охлаждении газов до температуры точки росы;

  • необходимость создания оборотных систем подачи воды в пылеуловитель.





Рис. 5. Схема скруббера Вентури
Аппараты мокрой очистки работают по принципу осаждения частиц пыли на поверхность либо капель, либо пленки жидкости. Осаждение частиц пыли на жидкость происходит под действием сил инерции и броуновского движения. Среди аппаратов мокрой очистки с осаждением частиц пыли на поверхность капель на практике более применимы скрубберы Вентури (рис. 5). Основная часть скруббера – сопло Вентури (
2). В него подводится запыленный поток газа и через центробежные форсунки 1 жидкость на орошение. В конфузорной части сопла происходит разгон газа от входной скорости (WT= 15–20 м/с) до скорости в узком сечении сопла 80–200 м/с и более.

Процесс осаждения пыли на капли жидкости обусловлен массой жидкости, развитой поверхностью капель и высокой относительной скоростью частиц жидкости и пыли в конфузорной части сопла. Эффективность очистки в значительной степени зависит от равномерности распределения жидкости по сечению конфузорной части сопла. В диффузорной части сопла поток тормозится до скорости 15–20 м/с и подается в каплеуловитель (3). Каплеуловитель обычно выполняют в виде прямоточного циклона.

Скрубберы Вентури широко используют в системах очистки газов от туманов. Эффективность очистки воздуха от тумана со средним размером частиц более 0,3 мкм достигает 0,999. К мокрым пылеуловителям относятся барботажно-пенные пылеуловители с провальной (рис. 6а) и переливной решетками (рис. 6б).

В таких аппаратах газ на очистку поступает под решетку (3), проходит через отверстия в решетке и, барботируя через слой жидкости и пены (2), очищается от пыли путем осаждения частиц на внутренней поверхности газовых пузырей. Режим работы аппаратов зависит от скорости подачи воздуха под решетку. При скорости до 1 м/с наблюдается барботажный режим работы аппарата. Дальнейший рост скорости газа в корпусе 1 аппарата до 2–2,5 м/с сопровождается возникновением пенного слоя над жидкостью, что приводит к повышению эффективности очистки газа и брызгоуноса из аппарата. Рис. 6. Схема барботажно-пенного пылеуловителя с провальной (а) и переливной (б) решетками приведена на рис. 6.




а) б)

Рис. 6. Барботажно-пенные пылеуловители с провальной (а) и переливной решетками (б)
Современные барботажно-пенные аппараты обеспечивают эффективность очистки газа от мелкодисперсной пыли – 0,95–0,96 при удельных расходах воды 0,4–0,5 л/м3. Практика эксплуатации этих аппаратов показывает, что они весьма чувствительны к неравномерности подачи газа под провальные решетки. Неравномерная подача газа приводит к местному сдуву пленки жидкости с решетки. Кроме того, решетки аппаратов склонны к засорению.

Метод абсорбции – очистка газовых выбросов от газов и паров основан на поглощении последних жидкостью. Для этого используют абсорберы. Решающим условием для применения метода абсорбции является растворимость паров или газов в абсорбенте. Так, для удаления из технологических выбросов аммиака, хлоро- или фтороводорода целесообразно применять в качестве абсорбента воду. Для высокоэффективного протекания процесса абсорбции необходимы специальные конструктивные решения. Они реализуются в виде насадочных башен (рис. 7), форсуночных барботажно-пенных и других скрубберов.



Р
абота хемосорберов основана на поглощении газов и паров жидкими или твердыми поглотителями с образованием малорастворимых или малолетучих химических соединений. Основными аппаратами для реализации процесса являются насадочные башни, барботажно-пенные аппараты, скрубберы Вентури и т. п. Хемосорбция – один из распространенных методов очистки отходящих газов от оксидов азота и паров кислот. Эффективность очистки от оксидов азота составляет 0,17–0,86 и от паров кислот – 0,95.
Рис. 7. Схема насадочной башни: 1 – насадка; 2 – разбрызгиватель
Термическая нейтрализация основана на способности горючих газов и паров, входящих в состав вентиляционных или технологических выбросов, сгорать с образованием менее токсичных веществ. Для этого метода используют нейтрализаторы. Различают три схемы термической нейтрализации:

  • прямое сжигание;

  • термическое окисление;

  • каталитическое дожигание.

Прямое сжигание используют в тех случаях, когда очищаемые газы обладают значительной энергией, достаточной для поддержания горения. Примером такого процесса является факельное сжигание горючих отходов. Так нейтрализуют циановодород в вертикально направленных факелах на нефтехимических заводах. Разработаны схемы камерного сжигания отходов. Такие дожигатели можно использовать для нейтрализации паров токсичных горючих или окислителей при их сдувах из емкостей.

Термическое окисление находит применение в тех случаях, когда очищаемые газы имеют высокую температуру, но не содержат достаточно кислорода, или когда концентрация горючих веществ незначительна и недостаточна для поддержания пламени.

В первом случае процесс термического окисления проводят в камере с подачей свежего воздуха (дожигание оксида углерода и углеводородов), а во втором – при подаче дополнительно природного газа.

Каталитическое дожигание используют для превращения токсичных компонентов, содержащихся в отходящих газах, в нетоксичные или менее токсичные путем их контакта с катализаторами. Для реализации процесса необходимо, кроме наличия катализаторов, поддержание таких параметров газового потока, как температура и скорость газов.

В качестве катализаторов используют платину, палладий, медь и др. Температуры начала каталитических реакций газов и паров изменяются в широких пределах – 200–400 °С. Объемные скорости процесса каталитического дожигания обычно устанавливают в пределах 2000-6000 ч (объемная скорость – это отношение скорости движения газов к объему каталитической массы).


Каталитические нейтрализаторы применяют для обезвреживания оксида углерода, летучих углеводородов, растворителей, отработавших газов и т. п.

Термокаталитические реакторы с электроподогревом типа ТКРВ разработаны Дзержинским филиалом НИИОГАЗа. Они предназначены для очистки газовых выбросов сушильных камер окрасочных линий от органических веществ и других технологических производств.

Каталитическая нейтрализация отработавших газов ДВС на поверхности твердого катализатора происходит за счет химических превращений (реакции окисления или восстановления), в результате которых образуются безвредные или менее вредные для окружающей среды и здоровья человека соединения.

Для высокоэффективной очистки выбросов необходимо применять аппараты многоступенчатой очистки. В этом случае очищаемые газы последовательно проходят несколько автономных аппаратов очистки или один агрегат, включающий несколько ступеней очистки. В системе последовательно соединенных аппаратов общая эффективность очистки равна:

, (16)
где – эффективность очистки 1-, 2-…n-го аппаратов.

Такие решения находят применение при высокоэффективной очистке газов от твердых примесей; при одновременной очистке от твердых и газообразных примесей; при очистке от твердых примесей и капельной жидкости и т. п. Многоступенчатую очистку широко применяют в системах очистки воздуха с его последующим возвратом в помещение.

Перечень пыле-, газо- и туманоочистного оборудования, разработанного НИИОГАЗом, приведен ниже.

Электрофильтр ЭГВ – для очистки от пыли невзрывоопасных технологических газов и аспирационного воздуха с температурой до 330 °С.

Электрофильтр ЭГАВ СРК – для эффективной очистки от пыли невзрывоопасных и непожароопасных дымовых газов при температуре от 130 до 250 °С после котлоагрегатов СРК целлюлозно-бумажной промышленности.

Электрофильтр ЭВЦТ – для очистки от пыли фосфорсодержащих газов с температурой от 230 до 600 °С, отходящих от электротермических печей.


Электрофильтр ЭТМ – для очистки газов, содержащих до 40 % тумана и капель серной кислоты со следами окислов мышьяка, селена, серы и возможных примесей фтора и его соединений.

Электрофильтр ЭГАЛТ – для очистки высокозапыленных (до 1000 г/м3) высокотемпературных (до 500 °С) агрессивных газов автогенных процессов цветной металлургии.

Электрофильтровентиляционный агрегат ЭФВА –для отсоса и высокоэффективной очистки невзрывоопасной и непожароопасной смеси воздуха с аэрозолем, образующимся при сварке и холодной штамповке металлов при температуре очищаемой смеси до 60 °С, разрежении не более 0,6 кПа.

Рукавный фильтр ФРОС – для очистки от пыли высокотемпературных газов в химической, нефтехимической и других отраслях промышленности.

Рукавный фильтр ФРИД-Б – для очистки запыленных газов, не являющихся токсичными, агрессивными, пожаро- и взрывоопасными в линиях высоконапорного пневмотранспорта химической, цементной и других отраслей промышленности.

Рукавный фильтр ФРИ-ЗО– для очистки высокозапыленных газов, не являющихся токсичными, агрессивными, пожаро- и взрывоопасными, в системах аспирации и линиях пневмотранспорта химической, цементной, машиностроительной и других отраслей промышленности.

Рукавные фильтры ФРИ-Б, ФРИ-72 – для очистки запыленного воздуха на предприятиях мукомольной, комбикормовой, пищевой промышленности.

Рукавный фильтр ФРБИ – для улавливания мелкодисперсных взрывоопасных красителей, пигментов и других пылей из воздуха и негорючих газов.

Рукавный фильтр ФРМ – для очистки от пыли аспирационного воздуха технологического оборудования и дымовых газов сушильных печей на предприятиях асбестовой промышленности.

Фильтры бумажные патронные ФБПИ для улавливания свинецсодержащих аэрозолей из вентиляционных выбросов, а также для очистки неагрессивных, нетоксичных, невзрывоопасных газов от химически неактивных, сухих нецементирующих пылей.

Скруббер с шаровой насадкой СДК для очистки газов от фтористого водорода, тетрафторида кремния, фосфорного ангидрида на предприятиях по производству минеральных удобрений. Для очистки газов в цветной металлургии, энергетике, в химической и других отраслях промышленности.

Скруббер центробежный вертикальный полый СЦВПдля очистки воздуха, удаляемого вытяжными вентиляционными системами, от пыли средней дисперсности.