Файл: Хранение энергии в контексте энергетического перехода обзор технологий Аннотация.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 05.12.2023
Просмотров: 189
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
[133] Hartmann P, Bender CL, Vračar M, Dürr AK, Garsuch A, Janek J, Adelhelm P. A. rechargeable room-temperature sodium superoxide (NaO2) battery. Nat Mater 2013;12:228–32.
[134] Xia C, Black R, Fernandes R, Adams B, Nazar LF. The critical role of phasetransfer catalysis in aprotic sodium oxygen batteries.
Nat Chem 2015;7:496–501.
[135] Li Y, Gong M, Liang Y, Feng J, Kim JE, Wang H, Hong G, Zhang B, Dai H. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat Commun 2013;4:1805.
[136] European Commission. Materials Roadmap Enabling Low Carbon Energy Technologies. Commission Staff Working Paper, COM(2011) 1609. Brussels,
Belgium: European Commission; 2011.
[137] Armand M, Tarascon JM. Building better batteries. Nature 2008:652–7.
[138] Shukla AK, Banerjee A, Ravikumar MK. Lead–carbon hybrid ultracapacitors and their applications. In: Chan K, Li CV, editors. Electrochemically enabled sustainability – devices, materials and mechanisms for energy conversion.
Chapter 8.,. Boca Raton, USA: CRC Press; 2014.
[139] Burke A. Electrochemical Capacitors. Chapter 39. In: Reddy T.B. editor, Linden D., editor emeritus. Handbook of Batteries. 4th ed. New York, USA: McGrawHill; 2011.
[140] González A, Goikolea E, Barrena JA, Mysyk R. Review on supercapacitors: technologies and materials. Renew Sustain Energy Rev 2016;58:1189–206.
[141] Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 2012;41:797–828.
[142] Dubal DP, Ayyad O, Ruiz V, Gómez-Romero P. Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev 2015; 44:1777–90.
[143] Cericola D, Kötz R. Hybridization of rechargeable batteries and electrochemical capacitors: principles and limits. Electrochim Acta 2012;72:1–17.
[144] Hsu CS, Lee WJ. Superconducting magnetic energy storage for power system applications. IEEE Trans Ind Appl 1993;29(5):990–6.
[145] Lorenzen HW, Brammer U, Harke M, Rosenbauer F. Small and fast-acting SMES systems. In: Seeber B, editor. Handbook of applied superconductivity,
2. Bristol, UK: Taylor & Francis; 1998.
[146] Schoenung SM, Hassenzahl WV. Long- vs. short-term energy storage technologies analysis - a life-cycle cost study Sandia Report SAND2003-2783.
Albuquerque, USA: Sandia National Laboratories; 2003. A.B. Gallo et al. / Renewable and Sustainable Energy Reviews 65 (2016) 800–822 821
[147] General Electric Industrial Systems, American Superconductor. d-SMES folder. 〈http://www.cocier.org/memoriascosmer2013/Modulo%205/CM5_5/
GE_DSMES.pdf〉 (Last accessed: 21/02/2016).
[148] Abdurrahman M, Baker S, Keshavamurty B, Jacobs M. Energy storage as a transmission asset. PJM Tech Rep, 2012.https://www.pjm.com/ /media/markets-ops/advanced-tech-pilots/xtreme-power-storage-as-transmission.ashx (Last accessed: 21/02/2016).
[149] Modern Power Systems. Distributed SMES: a new technology supporting active grid management. 〈http://www.modernpowersystems.com/features/
featuredistributed-smes-a-new-technology-supporting-active-grid-management/〉 (Last accessed: 21/02/2016).
[150] Nagaya S, Hirano N, Kondo M, Tanaka T, Nakabayashi H, Shikimachi K, et al. Development and performance results of 5 MVA SMES for bridging instantaneous voltage dips. IEEE Trans Appl Supercond 2004;14(2):699–704.
[151] Bray JW. Superconductors in applications; some practical aspects. IEEE Trans Appl Supercond 2009;19(3):2533–9.
[152] ABB., ARPA-E Superconducting Magnet Energy Storage System with Direct Power Electronics Interface. 〈http://arpa-e.energy.gov/?q¼slick-sheet-project/magnetic-energy-storage-system〉 (Last accessed: 21/02/2016).
[153] Tai-Yang, ARPA-E Research Company (TYRC). Novel, Low-Cost, High-Field Conductor for Superconducting Magnetic Energy Storage. 〈http://arpa-e.energy.gov/?q¼slick-sheet-project/high-power-low-cost-superconductingcable〉 (Last accessed: 21/02/2016).
[154] Blanchard JP. Environmental Issues Associated with Superconducting MagneticEnergy Storage (SMES) Plants. In: Proceedings of the 24th Intersoc Energy Convers Eng Conf (IECEC’89), 1989;4. p. 1777–82.
[155] Polk C, Boom RW, Eyssa YM. Superconductive Magnetic Energy Storage (SMES) external fields and safety considerations. IEEE Trans Magn 1992;28
(1):478–81.
[156] Grond L, Schulze P, Holstein J. Systems analyses Power to Gas: A technology review. DNV KEMA Energy & Sustainability. Groningen, Nederland: KEMA; 2013.
[157] International Energy Agency (IEA). Technology Roadmap: Hydrogen and Fuel Cells.Paris, France: OECD/IEA; 2015.
[158] Zittel W, Wurster R, Bolkow L. Advantages and disadvantages of hydrogen. Hydrogen in the energy sector.Sömmerda, Germany: Systemtechnik Gmbitt; 1996.
[159] Ragheb M. Hydride Alloys for Hydrogen Storage. In: Energy Storage and Conveyance – Bridging the Supply-Demand Gap. Urbana-Champaign, USA:
University of Illinois; 2011.
[160] Tozzini V, Pellegrini V. Prospects for hydrogen storage in graphene. Phys Chem Chem Phys 2013;15(1):80–9.
[161] Auer J, Keil J. State-of-the-art electricity storage systems. DB Research.
Frankfurt am Main, Germany: Deutsche Bank; 2012.
[162] Sterner M. Bioenergy and renewable power methane in integrated 100%
renewable energy systems Kassel, Germany: Kassel University Press; 2009.
〈http://www.uni-kassel.de/upress/online/frei/978-3-89958-798-2.volltext.
frei.pdf〉 Last accessed: 22/09/2015.
[163] Verdegaal W. Business models for power-to-gas/liquids – potential, challenges and uncertainties. Sunfire. Presentation at Institute for Advanced
Sustainability Studies (IASS) Brainstorming Workshop “Sustainable Fuels
from Renewable Energies”.Potsdam, Germany: IASS Potsdam; 2013.
[164] Harp G., Tran K.C., Sigurbjornsson O., Bergins C., Buddenberg T., Drach I.,Koytsoumpa E.I. Application of Power to Methanol Technology to Integrated Steelworks for Profitability, Conversion Efficiency, and CO2 Reduction. Paper presented at METEC & 2nd European Steel Technology and Application Days (ESTAD). Düsseldorf, Germany: METEC & 2nd ESTAD; 2015. 〈http://www.
metec-estad2015.com/papers2015final/P643.pdf〉 (Last accessed: 22/09/2015).
[165] Bilfinger Industrial Technologies / sunfire – Power-to-Liquids Fact Sheet. 〈http://www.sunfire.de/en/kreislauf/power-to-liquids〉 (Last accessed: 22/09/
2015).
[166] Herron JA, Kim J, Upadhye AA, Huber GW, Maravelias CT. A general framework for the assessment of solar fuel technologies. Energy Environ Sci
2015;8:126–57.
[167] Kim J, Henao CA, Johnson TA, Dedrick DE, Miller JE, Stecheld EB, Maravelias CT. Methanol production from CO2 using solar-thermal energy: process development and techno-economic analysis. Energy Environ Sci 2011;4:3122–32.
[168] Kim J, Johnson TA, Miller JE, Stecheld EB, Maravelias CT. Fuel production from CO2 using solar-thermal energy: system level analysis. Energy Environ Sci 2012;5:8417–29 (|).
[169] Haije WG, Geerlings H. Efficient production of solar fuel using existing large scale production technologies. Environ Sci Technol 2011;45(20):8609–10.
[170] Furler P. Solar thermochemical CO₂ and H₂O splitting via Ceria Redox Reactions.Zürich, Switzerland: ETH-Zürich; http://dx.doi.org/10.3929/ethz-a-010207593.
[171] van de Sanden R. Energy storage in CO2 neutral fuels: a plasma perspective. Dutch Institute for Fundamental Energy Research (DIFFER). EU 2050 Power Lab; 2014. https://www.kivi.nl/eu2050powerlab (Last accessed: 22/09/2015).
[172] Newman J, Hoertz PG, Bonino CA, Trainham JA. Review: an economic perspective on liquid solar fuels. J Electrochem Soc 2012;159(10):A1722–9.
[173] Ribas VE, JRH, Rodrigues, J.R. Simões-Moreira The Use of Concentrated Solar Power in Steam Gasification of Biomass. In: 15th Brazilian Congress of Thermal Sciences and Engineering, 2014, Belém. Anais do 15th ENCIT. RJ:
ABCM; 2014.
[174] A. Hauer Thermal Energy Storage. Technology Policy Brief E17. IEA-ETSAP and IRENA; 2012.
[175] Abedin AH, Rosen MA. A critical review of thermochemical energy storage systems. Open Renew Energy J 2011;4:42–6.
[176] Trausel F, de Jong A, Cuypers R. A review on the properties of salt hydrates for thermochemical storage. Energy Procedia 2014;48:447–52.
[177] Tescari S, Agrafiotis C, Breuer S, de Oliveira L, Puttkamer MN, Roeb M, Sattler C. Thermochemical solar energy storage via redox oxides: materials and reactor/heat exchanger concepts. Energy Procedia 2014;49:1034–43.
[178] Connolly D. A Review of Energy Storage Technologies For the integration of fluctuating renewable energy. Connolly D, PhD Project. Limerick, Ireland:
University of Limerick; 2010.
[179] Johnson M, Danielson D, Gyuk I. Grid-Sscale Energy Storage. Arpa-E PreSummit Workshop Presentation; 2010.
[180] Motto ER, Yamamoto M. New High Power Semiconductors: High Voltage IGBTs and GCTs. Proc Power Int Electron Conf 1998 (PCIM’98). p. 296–302.
[181] Electric Power Research Institute (EPRI). Electricity Energy Storage Technology Options – A White Paper Primer on Applications, Costs and Benefits.Palo Alto, USA: EPRI; 2010.
[182] Eyer J, Corey G. Energy Storage for the electricity grid: benefits and market potential assessment guide Sandia Report SAND2010-0815. Albuquerque,
USA: Sandia National Laboratories; 2010.
[183] Ibrahim H, Ilinca A, Perron J. Energy storage systems – characteristics and comparisons. Renew Sustain Energy Rev 2008;12(5):1221–50.
[184] Battke B, Schmidt TS. Cost-efficient demand-pull policies for multi-purpose technologies – the case of stationary electricity storage. Appl Energy
2015;155:334–48.
[185] Canales FA, Beluco A, Mendes CAB. Pumped storage hydropower in Brazil and the world: application and perspectives. REGET 2015;19(2):1230–49.
[186] Zuculin S, Pinto MARRC, Barbosa PSF. A Retomada do Conceito de Usinas Hidrelétricas Reversíveis no Setor Elétrico Brasileiro. 〈http://www.ele
tronorte.gov.br/opencms/export/sites/eletronorte/seminarioTecnico/arqui
vos/Artigo_UHR_zuculin_mirian_paulo_SEMINARIO_ELETRONORTE_nov_
2014.pdf〉 (Last accessed: 21/02/2016).
[187] Qadrdan M, Abeysekera M, Chaudry M, Wu J, Jenkins N. Role of power-to-gas in an integrated gas and electricity system in Great Britain. Int J Hydrog
Energy 2015;40:5763–75.
[188] Gahleitner G. Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications. Int J Hydrog Energy
2013;38:2039–61.
[189] Varone A, Ferrari M. Power to liquid and power to gas: an option for the German Energiewende. Renew Sustain Energy Rev 2015;45:207–18.
[190] Scholz R, Beckmann M, Pieper C, Muster M, Weber R. Considerations on providing the energy needs using exclusively renewable sources: energiewende in Germany. Renew Sustain Energy Rev 2014;35:109–25.
[191] Schiebahn S, T Grube, M Robinius, V Tietze, B Kumar, D. Stolten Power-to-gas: Technological overview, systems analysis and economic assessment for a case study in Germany.
[192] Siemens. New approach for energy storage. Solutions for power to gas. Process news – The magazine for the process industry. Number 1; 2014. 〈http://
www.industry.siemens.com/topics/global/en/magazines/process-news/archive/Documents/en/process-news-2014–1_en.pdf〉 (Last accessed: 21/02/
2016).
[193] Coelho VN, Coelho IM, Coelho BN, Cohen MW, Reis AJR, Silva SM, et al. Multiobjective energy storage power dispatching using plug-in vehicles in a
smart-microgrid. Renew Energy 2016;89:730–42.
[194] Hu J, Morais H, Souza T, Lind M. Electric vehicle fleet management in
smartgrids: a review of services, optimization and control aspects. Renew Sustain Energy Rev 2016;56:1207–26.
[195] Ehsani M, Falahi M, Lotfifard S. Vehicle to grid services: potential and applications. Energies 2012;5:4076–90.
[196] Panwar LK, Reddy KS, Kumar R, Panigrahi BK, Vyas S. Strategic Energy Management (SEM) in a micro grid with modern grid interactive electric
vehicle. Energy Convers Manag 2015; 106:41–52.
[197] Noori M, Zhao Y, Onat NC, Gardner S, Tatari O. Light-duty electric vehicles toimprove the integrity of the electricity grid through Vehicle-to-Grid technology: analysis of regional net revenue and emissions savings. Appl Energy
2016;168:146–58.
[198] Morse S, Glitman K. Electric vehicles as grid resourcesin ISO-NE and Vermont. Tech rep.Vermont Energy Investment Corporation; 2014.
[199] Schuller A, Flath CM, Gottwalt S. Quantifying load flexibility of electric vehicles for renewable energy integration. Appl Energy 2015; 151:335–44.
[200] Moradi MH, Eskandari M, Hosseinian SM. Cooperative control strategy of energy storage systems and micro sources for stabilizing microgrids in different operation modes. Electr Power Energy Syst 2016; 78:390–400.
[201] Ikeda S, Ooka R. Metaheuristic optimization methods for a comprehensive operating schedule of battery, thermal energy storage, and