Файл: Хранение энергии в контексте энергетического перехода обзор технологий Аннотация.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 05.12.2023
Просмотров: 184
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
October 2014.
[8] International Energy Agency (IEA). World energy outlook 2013.Paris, France: OECD/IEA; 2013.
[9] Pickard WF, Shen AQ, Hansing NJ. Parking the power: strategies and physical limitations for bulk energy storage in supply–demand matching on a grid
whose input power is provided by intermittent sources. Renew Sustain Energy Rev 2009;13(8):1934–45.
[10] Evans A, Strezov V, Evans T. Assessment of utility energy storage options for increased renewable energy penetration. Renew Sustain Energy Rev 2012;16 (6):4141–7.
[11] Denholm P, Hand M. Grid flexibility and storage required to achieve very high penetration of variable renewable electricity. Energy Policy 2011;39
(3):1817–30.
[12] International Energy Agency (IEA). Empowering variable renewables – options for flexible electricity systems.Paris, France: OECD/IEA; 2008.
[13] International Energy Agency (IEA). Harnessing variable renewables – a guide to the balancing change.Paris, France: OECD/IEA; 2011.
[14] Kondziella H, Bruckner T. Flexibility requirements of renewable energy based electricity systems – a review of research results and methodologies. Renew
Sustain Energy Rev 2016;53:10–22.
[15] Milborrow D. Impacts of wind on electricity systems with particular reference to Alberta. Tech. rep. Ottawa.Canada: Canadian Wind Energy Association; 2004.
[16] Doherty R, O’Malley M. A new approach to quantify reserve demand in
systems with significant installed wind capacity. IEEE Trans Power Syst 2005; 20(2):587–95.
[17] Ela E, Kirby B. Ercot event on February 26, 2008: Lessons learned. Tech. Rep. NREL/TP-500-43373. Golden, USA: National Renewable Energy Lab; 2008.
[18] Lund PD, Lindgren J, Mikkola J, Salpakari J. Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renew Sustain Energy Rev 2015;45:785–807.
[19] Paatero JV, Lund PD. Effects of large-scale photovoltaic power integration on electricity distribution networks. Renew Energy 2007;32:216–34.
[20] Holttinen H. Wind integration: experience, issues and challenges. WileyInterdiscip Rev Energy Environ 2012;1:243–55.
[21] Lipman T, Ramos R, Kammen D. (Technical Report). An assessment of battery and hydrogen energy storage systems integrated with wind energy resources
in California. Berkley, USA: University of California, Berkley; 2005.
[22] Korpaas M, Greiner C. Opportunities for hydrogen production in connection with wind power in weak grids. Renew Energy 2008;33(6):1199–208.
[23] Scorah H, Sopinka A, van Kooten GC. The economics of storage, transmission and drought: integrating variable wind power into spatially separated electricity grids. Energy Econ 2012;34:536–41.
[24] Schaber K, Steinke F, Hamacher T. Transmission grid extensions for the integration of variable renewable energies in Europe: who benefits where?
Energy Policy 2012;43:123–35.
[25] Järventausta P, Repo S, Rautiainen A, Partanen J. Smart grid power system control in distributed generation environment. Annu Rev Control 2010; 34(2) : 277–86.
[26] Steinke F, Wolfrum P. Grid vs. storage in a 100% renewable Europe. Renew Energy 2013;50:826–32.
[27] Denholm P. Improving the technical, environmental and social performance of wind energy systems using biomass-based energy storage. Renew Energy
2006;31(9):1355–70.
[28] Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Kallos G, Pytharoulis I. Improvements in wind speed forecasts for wind power prediction
purposes using Kalman filtering. J Wind Eng Ind Aerodyn 2008;96(12):2348–62.
[29] Ulbricht R, Fischer U, Lehner W, Donker H. Optimized renewable energy forecasting in local distribution networks. ACM Int Conf Proc Ser 2013:262–6.
[30] Liu H, Erdem E, Shi J. Comprehensive evaluation of ARMA–GARCH(-M) approaches for modeling the mean and volatility of wind speed. Appl Energy
2011;88:724–32.
[31] Jacobsen HK, Zvingilaite E. Reducing the market impact of large shares of intermittent energy in Denmark. Energy Policy 2010;38(7):3403–13.
[32] Finn P, Fitzpatrick C. Demand side management of industrial electricity
consumption: promoting the use of renewable energy through real-time pricing. Appl Energy 2014;113:11–21.
[33] Stadler I. Power grid balancing of energy systems with high renewable energy penetration by demand response. Util Policy 2008;16:90–8.
[34] Moura PS, De Almeida AT. The role of demand-side management in the grid integration of wind power. Appl Energy 2010;87:2581–8.
[35] Martinez-Duart JM, Hernandez-Moro JM, Serrano-Calle J, Gomez-Calvet S, Casanova-Molina M R. New frontiers in sustainable energy production and storage. Vacuum 2015. http://dx.doi.org/10.1016/j.vacuum.2015.05.027.
[36] Díaz-González F, Sumper A, Gomis-Bellmunt O, Villafáfila-Robles R. A review of energy storage technologies for wind power applications. Renew Sustain
Energy Rev 2012;16(4):2154–71.
[37] Hall PJ, Bain EJ. Energy-storage technologies and electricity generation. Energy Policy 2008;36(12):4352–5.
[38] Hadjipaschalis I, Poullikkas A, Efthimiou V. Overview of current and future energy storage technologies for electric power applications. Renew Sustain
Energy Rev 2009;13(6–7):1513–22.
[39] Ibrahim H, Ilinca A. Techno-economic analysis of different energy storage technologies, energy storage - technologies and applications. In: Zobaa A,
editor. Energy storage – technologies and applications. Rijeka, Croatia: InTech; 2013 ISBN: 978-953-51-0951-8.
[40] Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y. Progress in electrical energy storage system: a critical review. Progr Nat Sci 2009;19(3):291–312.
[41] Zakeri B, Syri S. Electrical energy storage systems: a comparative life cycle cost analysis. Renew Sustain Energy Rev 2015;42:569–96.
[42] Dell RM, Rand DAJ. Energy storage – a key technology for global energy sustainability. J Power Sources 2001;100:2–17.
[43] Ferreira HL, Garde R, Fulli G, Kling W, Lopes JP. Characterisation of electrical energy storage technologies. Energy 2013;53:288–98.
[44] Beaudin M, Zareipour H, Schellenberglabe A, Rosehart W. Energy storage for mitigating the variability of renewable electricity sources: an updated review. Energy Sustain Dev 2010;14(4):302–14.
[45] Lund H, Andersen AN, Østergaard PA, Mathiesen BV, Connolly D. From electricity smart grids to smart energy systems – a market operation based
approach and understanding. Energy 2012;42(1):96–102.
[46] Connolly D, Lund H, Mathiesen BV, Pican E, Leahy M. The technical and economic implications of integrating fluctuating renewable energy using
energy storage. Renew Energy 2012;43:47–60.
[47] Østergaard PA. Comparing electricity, heat and biogas storages’ impacts on renewable energy integration. Energy 2012;37(1):255–62.
[48] Mathiesen BV, Lund H, Connolly D, Wenzel H, Østergaard PA, Möller B, et al. Smart Energy Systems for coherent 100% renewable energy and transport
solutions. Appl Energy 2015;145:139–54.
[49] The Economist. Germany's energy transformation – Energiewende. London, UK: The Economist Newspaper Ltd; July 28th, 2012. 〈http://www.economist.
com/node/21559667〉 (Last accessed: 20/09/2015).
[50] Maddaloni J, Rowe A, van Kooten G. Network constrained wind integration on Vancouver Island. Energy Policy 2008;36(2):591–602.
[51] Kim J-H, Shcherbakova A. Common failures of demand response. Energy 2011;36:873–80.
[52] Zafirakis D, Chalvatzis KJ, Baiocchi G, Daskalakis G. Modeling of financial incentives for investments in energy storage systems that promote the largescale integration of wind energy. Appl Energy 2013;105:138–54.
[53] Benitez LE, Benitez PC, van Kooten GC. The economics of wind power with energy storage. Energy Econ 2008;30(4):1973–89.
[54] Grünewald PH, Cockerill TT, Contestabile M, Pearson PJG. The socio-technical transition of distributed electricity storage into future networks – system
value and stakeholder views. Energy Policy 2012;50:449–57.
[55] Toledo OM, Oliveira Filho D, ASAC Diniz. Distributed photovoltaic generation and energy storage systems: a review. Renew Sustain Energy Rev 2010;14 (1):506–11.
[56] Hill CA, Such MC, Chen D, Gonzalez J, Grady WM. Battery energy storage for enabling integration of distributed solar power generation. IEEE Trans Smart Grid 2012;3(2):850–7.
[57] Battke B, Schmidt TS, Grosspietsch D, Hoffmann VH. A review and probabilistic model of lifecycle costs of stationary batteries in multiple applications. Renew Sustain Energy Rev 2013;25:240–50.
[58] Deane JP, Ó Gallachóir BP, McKeogh EJ. Techno-economic review of existing and new pumped hydro energy storage plant. Renew Sustain Energy Rev
2010;14(4):1293–302.
[59] Denholm P, King JC, Kutcher CF, Wilson PPH. Decarbonizing the electric sector: combining renewable and nuclear energy using thermal storage. Energy Policy 2012;44:301–11.
[60] Electric Power Research Institute (EPRI). EPRI–DOE Handbook of energy storage for transmission and distribution applications.Palo Alto, USA: EPRI;
2003.
[61] Eyer J. Electric utility transmission and distribution upgrade deferral benefits from modular electricity storage Sandia Report SAND2009-4070. Albuquerque, USA: Sandia National Laboratories; 2009.
[62] Sundararagavan S, Baker E. Evaluating energy storage technologies for wind power integration. Sol Energy 2012;86(9):2707–17.
[63] Hasan NS, Hassan MY, Majid MS, Rahman HA. Review of storage schemes for wind energy systems. Renew Sustain Energy Rev 2013;21:237–47.
[64] Madlener R, Latz J. Economics of centralized and decentralized compressed air energy storage for enhanced grid integration of wind power. Appl Energy 2013;101:299–309.
[65] Tan X, Li Q, Wang H. Advances and trends of energy storage technology in Microgrid. Electr Power Energy Syst 2013;44(1):179–91.
[66] Kloess M, Zach K. Bulk electricity storage technologies for load-leveling
operation – an economic assessment for the Austrian and German power market. Int J Electr Power Energy Syst 2014;59:111–22.
[67] Kazempour SJ, Moghaddam MP, Haghifam MR, Yousefi GR. Electric energy storage systems in a market-based economy: comparison of emerging and
traditional technologies. Renew Energy 2009;34(12):2630–9.
[68] Karellas S, Tzouganatos N. Comparison of the performance of compressedair and hydrogen energy storage systems: Karpathos island case study. Renew Sustain Energy Rev 2014;29:865–82.
[69] Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J. Electrochemical energy storage for green grid. Chem Rev 2011;111(5):3577–613.
[70] Lund H, Salgi G. The role of compressed air energy storage (CAES) in future sustainable energy systems. Energy Convers Manag 2009;50(5):1172–9.
[71] Larsen T, Pedersen AS, Berg B, Rudmose C, Yde L, Nielsen LH, et al. Strategy for storage and distribution of energy – a strategy for research, development, demonstration and commercialization 2015–2025 (June). Frederiksberg,
Denmark: The Danish Partnership For Hydrogen and Fuel Cells; 2015.
[72] Sandia National Laboratories and U.S. Department of Energy (DOE) Global Energy Storage Database. 〈http://www.energystorageexchange.org/〉 ((Last
accessed): 20/09/2015).
[73] Simbolotti G, R. Kempener Electricity Storage. Technology Policy Brief E18. IEA-ETSAP and IRENA; 2012.
[74] EASE (European Association for the Storage of Energy), (EERA (European Energy Research Alliance). Joint EASE/EERA recommendations for a European Energy Storage Technology Development Roadmap towards 2030 –
Technical Annex. Brussels, Belgium: EASE/EERA; 2013.
[75] Agrawal P, Nourai A, Markel L, Fioravanti R, Gordon P, Tong N, Huff G.
Characterization and assessment of novel bulk storage technologies SandiaReport SAND2011–3700. Albuquerque, USA: Sandia National Laboratories; 2011.
[76] Gravity Power. Grid Scale Energy Storage. http://www.gravitypower.net/〉 (Last accessed: 20/09/2015).
[77] Pimm AJ, Garvey SD, Drew RJ. Shape and cost analysis of pressurized fabric structures for subsea compressed air energy storage. Proc Inst Mech Eng C: J
Mech Eng Sci 2011;225(5):1027–43.
[78] Pimm AJ, Garvey SD, de Jong M. Design and testing of Energy Bags for underwater compressed air energy storage. Energy 2014;66:496–508.
[79] Hydrostor. Underwater Compressed Air Energy Storage – Islands & Microgrid White Paper; 2013. 〈http://www.homerenergy.com/microgrid-white-papers.
html〉 (Last accessed: 20/09/2015).
[80] White L. Theophilus Redivivus. Technol Cult 1964;5(2):224–33.
[81] Bitterly JG. Flywheel technology: past, present, and 21st century projections. IEEE Aerosp Electron Syst Mag 1998;13:13–6.
[82] Motor Trend. The GYROBUS: Something New Under the Sun?, Motor Trend 1952;January:37.
[83] Centre for Low Carbon Futures. Liquid air in the energy and transport systems. Opportunities for industry and innovation in the UK. University of
Birmingham; 2013.
[84] Stöver B, Alekseev A, Stiller C. Liquid Air Energy Storage (LAES) Development Status and Benchmarking with other Storage Technologies. Power-Gen Europe 2014.
http://pennwell.websds.net/2014/cologne/pge/slideshows
T7S6O30-slides.pdf (Last accessed: 20/09/2015).
[85] Luo X, Wang J, Dooner M, Clarke J. Overview of current development in
electrical energy storage technologies and the application potential in power system operation. Appl Energy 2015;137:511–36.
[86] Highview Power Storage. Cryogen: a mature product; now a new means of energy storage. 〈http://www.imeche.org/docs/default-source/2011-press-re
leases/Highview_2pager.pdf〉 (Last accessed: 20/09/2015).
[87] Holt W. Scotland: A case study for liquid air storage. Highview Power Storage. Summary Report; 2013. 〈http://www.liquidair.org.uk/case-studies/〉
(Last accessed: 20/09/2015).
[88] Barbour E. An investigation into the potential of energy storage to tackle
intermittency in renewable energy generation.Edinburg, UK:
University Of Edinburg; 2013.
[89] Desrues T, Ruer J, Marty P, Fourmigué JF. A thermal energy storage process for large scale electric applications. Appl Therm Eng 2009;30(5):425–32.
[90] Ruer J, Sibaud E, Desrues T, Muguerra P. Pumped Heat Energy Storage.
General Presentation. Saipem; 2010. http://www.keynergie.com/articles/paper%20phs-paper.pdf (Last accessed: 21/09/2015).
[91] Thess A. Thermodynamic efficiency of pumped heat electricity storage. Phys Rev Lett 2013;111(11) 110602-1-5.
[92] White A, Parks G, Markides CN. Thermodynamic analysis of pumped thermal electricity storage. Appl Therm Eng 2013;53(2):291–8.
[93] ARUP. Five-minute guide to electricity storage technologies; 2012. 〈http://publications.arup.com/Publications/F/Five_minute_guide_electricity_sto
rage_technologies.aspx〉 (Last accessed: 21/09/2015).
[94] Proctor P. Energy storage: a potential game changer and enabler for meeting our future energy needs? Loughborough, UK: Energy Technologies Institute (ETI); 2014.
[95] Isis Innovation Ltd. Pumped Heat Electricity Storage (PHES) Project. University of Oxford. 〈http://isis-innovation.com/licence-details/pumped-heatelectricity-storage-phes-technology/〉 (Last accessed: 21/09/2015).
[96] Drouilhet S., Johnson B.L. A Battery Life Prediction Method for Hybrid Power Applications.The 35th AIAA Aerospace Sciences Meeting and Exhibit. Reno, USA;1997.
[97] Ning G, White RE, Popov BN. A generalized cycle life model of rechargeable Li-ion batteries. J Electrochim Acta 2006;51(10):2012–22.
[98] Linden D, Reddy TB. Secondary batteries – introduction. 3rd ed.. In: Linden D, Reddy TB, editors. Handbook of batteries. Chapter 22.,. New York, USA: McGraw-Hill; 2002.
[99] Rydh CJ, Sandén BA. Energy analysis of batteries in photovoltaic systems. Part I: performance and energy requirements. Energy Convers Manag 2005;46 (11–12):1957–79.
[100] Krivik P, Baca P. Electrochemical energy storage. In: Zobaa A, editor. Energy storage – technologies and applications. Rijeka, Croatia: InTech; 2013 ISBN: 978-953-51-0951-8.
[101] Albright G, J. Edie, S. Al-Hallaj A Comparison of Lead Acid to Lithium-ion in Stationary Storage Applications. AllCell Technologies LLC 2012. 〈http://www. batterypoweronline.com/main/wp-content/uploads/2012/07/Lead-acidwhite-paper.pdf〉 ((Last accessed): 21/02/2016).
[102] Victron Energy. Gel and AGM Batteries. Product brochure. 〈https://www.victronenergy.com/upload/documents/Datasheet-GEL-and-AGM-Batteries-EN. pdf〉 (Last accessed: 21/02/2016).
[103] Albertus P, Christensen J, Newman J. Modeling side reactions and nonisothermal effects in nickel metal-hydride batteries. J Electrochem Soc 2008;155(1):A48–60.
[104] Nitta N, Wu F, Lee JT, Yushin G. Li-ion battery materials: present and future. Mater Today 2015;18(5):252–64.
[105] Chen J. Recent progress in advanced materials for lithium ion batteries.
Materials 2013;6:156–83.
[106] Whittingham MS. Lithium batteries and cathode materials. Chem Rev
2004;104:4271–301.
[107] Dahn J., Ehrlich G.M. Lithium-ion Batteries. Chapter 26. In: Reddy T.B. editor, Linden D., editor emeritus. Handbook of Batteries. 4th ed. New York, USA:
McGraw-Hill; 2011.
[108] Scrosati B, Hassoun J. Lithium batteries: status and future. In: Chan K, Li CV, editors. Electrochemically enabled sustainability – devices, materials and
mechanisms for energy conversion. Chapter 3.,. Boca Raton, USA: CRC Press;
2014.
[109] Deng D. Li-ion batteries: basics, progress, and challenges. Energy Sci Eng 2015;3(5):385–418.
[110] Buchmann I. Batteries in a portable world: a handbook on rechargeable
batteries for non-engineers. 3rd ed.. Richmond, Canada: Cadex Electronics Inc; 2011.
[111] Burke A, Miller M. Performance characteristics of lithium-ion batteries of various chemistries for plug-in hybrid vehicles. (Working Paper Series). Institute of Transportation Studies; 2009.
[112] Bradbury K. Energy Storage Technology Review; 2010 〈http://www.kylebrad bury.org/〉 (Last accessed: 20/09/2015).
[113] Schlumberger Energy Institute (SBC). Electricity Storage Factbook. Leading the Energy Transition; 2013. ttps://www.sbc.slb.com/SBCInstitute/Publica
tions/ElectricityStorage.aspx〉 (Last accessed: 20/09/2015).
[114] NGK Insulators Ltd. NAS Sodium Sulfur Battery Energy Storage System. History of NAS Battery Development. https://www.ngk.co.jp/nas/why/history.
html〉 (Last accessed: 22/09/2015).
[115] Fuchs G, Lunz B, Leuthold M, Sauer DU. Technology overview on electricity storage. Overview on the potential and on the deployment perspectives of electricity storage technologies. Aachen, Germany: Institut Für Stromrichtertechnik Und Elektrische Antriebe (ISEA), RWTH Aachen University; 2012.
[116] Abele A, Elkind E, Intrator J, Washom B. 2020 strategic analysis of energy storage in California. Sacramento.USA: California Energy Commission; 2011.
[117] Meridian International Research. The Sodium Nickel Chloride “Zebra” Battery. In: 2007: Peak Oil The Electric Vehicle Imperative Market Analysis Technology Assessment. Martainville, France: Meridian International Research; 2005.
[118] FIAMM. FIAMM SoNick. 〈http://www.fiammsonick.com/〉 (Last accessed: 21/02/2016).
[119] Cavanagh K, Ward JK, Behrens S, Bhatt AI, Ratnam EL, Oliver E, Hayward J. Electrical energy storage: technology overview and applications. EP154168. Newcastle, Australia: CSIRO; 2015.
[120] Miraldi A.K., Restello S. Sodium Metal Chloride Battery Safety in Standby Applications. International Stationary Battery Conference, Battcon; 2013.
[121] Dustmann CH, Bito A. Safety. In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati B, editors. Encyclopedia of electrochemical power sources, 4.
Amsterdam, Nederland: Elsevier; 2009.
[122] Bindner H, Ekman C, Gehrke O, Isleifsson F. Characterization of vanadium flow battery, revised. Roskilde, Denmark: Risø DTU; 2012.
[123] Soloveichik GL. Battery technologies for large-scale stationary energy storage. Annu Rev Chem Biomol Eng 2011;2:503–27.
[124] Soloveichik GL. Flow batteries: current status and trends. Chem Rev 2015;115 (20):11533–58.
[125] Dennenmoser M. Status and potential of redox flow batteries. Presentation at Inter Solar 2012/ PV Energy World Munich, Germany: Fraunhofer Institute
For Solar Energy Systems ISE; 2012. 〈http://www.intersolar.de/fileadmin/Intersolar_Europe/Besucher_Service_2012/PV_ENERGY_WORLD/120613-4-PVEW-Dennenmoser-Fraunhofer-ISE.pdf〉 Last accessed: 21/02/2016.
[126] Chalamala BR, Soundappan T, Fisher GR, Anstey MR, Viswanathan VV, Perry ML. Redox flow batteries: an engineering perspective. Proc IEEE 2014;102 (6):976–99.
[127] Prudent Energy. VRB Systems. Product brochure. 2011. 〈http://www.pdenergy.com/pdfs/Prudent_Energy_Product_Brochure_2011.pdf〉 (Last accessed: 21/02/2016).
[128] P. de Boer, J. Raadschelders Flow batteries. Leonardo ENERGY; 2007. 〈http://www.leonardo-energy.org/sites/leonardo-energy/files/root/pdf/2007/
Briefing%20paper%20-%20Flow%20batteries.pdf〉 ((Last accessed): 21/02/
2016).
[129] Hatzell KB, Boota M, Kumbur EC, Gogotsia Y. Flowable conducting particlenetworks in redox-active electrolytes for grid energy storage. J Electrochem
Soc 2015;162(5):A5007–12.
[130] Akhil A.A., Huff G., Currier A.B., Kaun B.C., Rastler D.M., Chen S.B., Cotter A.L., Bradshaw D.T., Gauntlett W.D. DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA. Sandia Report SAND2013–5131. Albuquerque, USA: Sandia National Laboratories; 2013.
[131] Abraham KM. A brief history of non-aqueous metal-air batteries. ECS Trans 2008;3(42):67–71.
[132] Das SK, Laub S, Archer LA. Sodium–oxygen batteries: a new class of metal–air batteries. J Mater Chem A 2014;2:12623–9.