Файл: Исследование гетеропереходов представляет собой важный раздел физики полупроводниковых приборов, который сформировался в последние четыре десятилетия на основе изучения эпитаксиального выращивания полупроводников.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 05.12.2023

Просмотров: 38

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Большое количество моделей, объясняющих процессы в гетеропереходах CdS-Cu2S, обусловлено различной технологией их получения, нестабильностью гетеропереходов в процессе работы, деградацией характеристик и другими причинами [3].

На рисунке 4 приведены типичные кривые спектрального распределения тока короткого замыкания гетеропереходов с различным химическим составом базового слоя. [3].






Рис.4. Спектральное распределение тока короткого замыкания тыльнобарьерных фотоэлементов с различным составом базового слоя:

1 - нелегированный CdS;

2 - CdS с примесью 0.01% In;

3 - CdZnS с примесью 0.2% In.

На рисунке 5 изображена детальная зонная диаграмма гетераперехода, построенная Дасом, который использовал теоретическую модель Ротворфа и другие модели. Значения всех параметров перехода, использованные в этой диаграмме, были определены экспериментально [4].






Рис.5. Энергетическая зонная диаграмма гетероперехода CdS-Cu2S.

Фотоэлектрические свойства гетероперехода CdS-Cu2S подробно рассмотрены ниже.
§ 3. Фотоэлектрические свойства гетероперехода CdS-Cu2S.
В основу формирователя сигналов изображения положено свойство неидеального гетероперехода CdS-Cu2S накапливать положительный заряд неравновесных дырок на локальных уровнях.

На зонной диаграмме (рис.6) изображены процессы, происходящие в ФСИ при освещении.

Резкое различие в проводимости сульфидов кадмия и меди приводит к тому, что область пространственного заряда локализована практически полностью со стороны CdS [4].






Рис.6. Зонная диаграмма ФСИ.

При фотовозбуждении квантами из области собственного поглощения сульфида кадмия появляются неравновесные электроны и дырки (переходы 1). Электроны удаляются полем барьера в объем базовой области, а дырки захватываются вблизи границы раздела на ловушки и центры рекомбинации (переходы 2). Наличие таких компенсирующих центров с большой концентрацией фактически является одним из основных свойств рассматриваемого гетероперехода. Поле барьера способствует накоплению дырок в ОПЗ, поэтому даже при незначительном уровне фотовозбуждения распределение положительного заряда в CdS значительно изменяется, что приводит к росту емкости перехода. Кроме того, распределение энергии электрона от координаты изменяется с квадратичного на экспоненциальное. При этом резко возрастает напряженность электрического поля у границы раздела гетероперехода [3].


Ток короткого замыкания Iкз формирователя изображения находится в прямой зависимости от пространственного распределения электрического потенциала φ(x), а это распределение непосредственно связано с концентрацией дырок, локализованных на ловушках.

Как показано в [3]:



(8)

где - фототок в отсутствие потерь на границе раздела;

- подвижность электронов в CdS;

- скорость поверхностной рекомбинации на границе раздела.

Поскольку дрейфовая скорость электронов определяется из соотношения:



(9)

что равнозначно:



(10)

выражение (8) можно переписать:



(11)

Таким образом, изменяя освещенность гетероперехода с помощью собственной для сульфида кадмия подсветки можно управлять распределением φ(x), а, следовательно, и дрейфовой скоростью электронов и величиной тока короткого замыкания Iкз.

При проецировании на образец какого-либо изображения, его точки освещаются по разному, что приводит к различной концентрации дырок, захваченных на ловушки и соответственно к различному изгибу энергетических зон в ОПЗ.

Если проецирование прекратить, то различие в концентрации дырок сохраняется достаточно долгое время что позволяет использовать гетеропереход в качестве устройства, запоминающего оптическую информацию.

Считывание этой информации возможно при сканировании образца инфракрасным светом. Длительность ИК - импульсов при сканировании должна быть как порядка 10 мкс, так как более длинные импульсы будут вызывать активное оптическое опустошение ловушек, т.е. высвобождение дырок с локальных уровней в валентную зону (переход 6).


С помощью ИК - подсветки можно также производить стирание изображения, при этом образец освещают импульсами большой длительности с высокой частотой следования. После чего образец пригоден для повторного запоминания другого изображения.

Информация, полученная при сканировании образца, обрабатывается компьютерными методами и затем может воспроизводиться на экране компьютера. Процессы записи и считывания могут быть значительно разнесены во времени, однако длительное хранение сопровождается термическим опустошением ловушек, что приводит к постепенной утрате оптической информации.

При хранении образца при температуре около 0oС считывание информации возможно в течении 6-8 дней. Повышение температуры хранения приводит к более быстрому термическому высвобождению дырок в валентную зону.

Более подробно явления удаления захваченного заряда будут рассмотрены ниже.
§ 4. Механизмы выброса захваченного заряда в ОПЗ гетероперехода CdS-Cu2S.
Гетеропереход CdS-Cu2S может находиться в двух различных состояниях. Одно из них - равновесное - обладает низкой чувствительностью к инфракрасному свету и позволяет получить невысокое значение тока Iкз. Другое состояние - неравновесное - высокочувствительно к ИК - свету и дает значительно большую величину тока короткого замыкания.

Переход из равновесного состояния в неравновесное осуществляется при действии коротковолнового света за счет описанного выше эффекта захвата и накопления неравновесных дырок на ловушках в ОПЗ CdS

Время сохранения структурой неравновесного состояния определяется величиной рекомбинационного барьера и процессом выброса дырок из ловушек, идущего наряду с накоплением. Но после прекращения действия коротковолновой подсветки выброс начинает играть решающую роль в токопереносе, так как освобождение захваченного заряда обусловливает обратные изменения параметров барьера и переход структуры из неравновесного состояния в равновесное.

Интенсивность выброса определяет величину и скорость этого изменения параметров барьера, а значит и Iкз. Поэтому представляется важным звать, как именно выброс влияет на параметре барьера после прекращения фотовозбуждения коротковолновым светом, как быстро они изменяются со временем.

Удаление дырок, захваченных на ловушки в ОПЗ CdS, возможно по следующим четырем механизмам (Рис.7):


1.термический выброс в валентную зону CdS (переход 1);

2.непосредственное туннелирование дырок с ловушечных центров валентную зону Cu2S (переход 2);

3.двухступенчатое туннелирование электрона из квазинейтральной области CdS в ОПЗ (переход 3) и последующей рекомбинации с неравновесной дыркой;

4.туннельно-прыжковая рекомбинация (переход 4)






Рис.7. Механизмы удаления захваченных на ловушки дырок из ОПЗ гетероперехода CdS-Cu2S

Наличие последнего механизма связано с тем, что дефекты трансляционной симметрии в ОПЗ приводят к размыванию краев разрешенных зов и образованию в запрещенной зоне отличной от нуля плотности состояний N(E). По этим локальным состояниям возможен токоперенос, описываемый с позиций модели прыжковой проводимости Мотта. Часть электронов, находящихся на локализованных состояниях, может рекомбинировать с дырками, захваченными на ловушки, очевидно, что рекомбинировать могут лишь носители, находящиеся вблизи уровня Ферми, т.к. выше носителей нет. а ниже все состояния заполнены и прыжок совершить некуда. Таким образом, рекомбинировать могут только относительно подвижные носители, расположенные на энергетическом расстоянии порядка kT от уровня Ферми EF.

Вероятности осуществления указанных механизмов находятся в сильной зависимости от глубины залегания дырочных ловушек, ET, температуры образца и пространственной координаты локальных центров в ОПЗ.

Внешнее смещение оказывает на механизёмы выброса разное влияние, так, термический выброс (1) от напряжения не зависит вообще, непосредственное туннелирование (2) зависит слабо, а двухступенчатая рекомбинация я туннельно-прыжковый механизм проявляют сильную зависимость от внешнего смещения.

Кинетика выброса дырок по перечисленным механизмам при фотовозбуждении описывается уравнением:



(12)

где f -функция генерации, имеющая постоянное значение;


-тепловая скорость носителей;

Spt и Snt-поперечное сечение захвата дырок я электронов

Pv-эффективная плотность состояний в валентной зоне CdS;

n0-концентрация свободных электронов в квазинейтральной области CdS;

Snr-поперечное сечение захвата электронов центром рекомбинации на границе раздела;

- N(EF) -плотность состояний в окрестности уровня Ферми;

-D1(х),D2(х)-коэффициенты прозрачности барьеров, соответствующих туннелированию я двухступенчатой рекомбинации;

-эффективная тепловая скорость носителей при прыжковой проводимости.

Второе слагаемое в правой части описывает термический выброс (1), третье - туннельный (2), четвертое - двухступенчатое туннелирование (3), а пятое – туннельно-прыжковую рекомбинацию (4).

Рассмотрим кинетику выброса дырок в отсутствии фотовозбуждения, то есть случай спадающей релаксации. Пусть при t=0 (в момент выключения коротковолнового света) концентрация на ловушках такова, что условие:



(13)

выполняется. В этом случае рекомбинационными потерями на границе можно пренебречь и ток, генерированный длинноволновым светом в Cu2S, будет максимален. После выключения света при t=0 в уравнении (12) функция генерации f оказывается равной нулю. В то же время начальное условие записывается в виде



(14)

Безусловно, при всех значениях x pt(x)≤Nt. Таким образом, уравнение (12) перепишется в виде:



(15)

Данное уравнение определяет зависимость концентрации носителей захваченных на дырочные ловушки в ОПЗ гетероперехода CdS-Cu2S от времени, прошедшего после выключения возбуждающего света.

Решение кинетического уравнения для неравновесных дырок с концентрацией