Файл: Конспект лекций по теме Функциональные ряды.rtf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 05.12.2023

Просмотров: 39

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Размещено на http://www.allbest.ru/

Министерство образования и науки российской федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Национальный исследовательский ядерный университет «МИФИ»

Волгодонский инженерно-технический институт - филиал НИЯУ МИФИ

Конспект лекций

по теме: «Функциональные ряды»

Волгодонск
1. Функциональные ряды
Определение: , где - функции переменной х называется функциональным рядом.

При некоторых значениях х функциональный ряд сходится, при других значениях х – расходится.

Определение: Множество значений переменной х, при которых функциональный ряд - сходится, называется областью сходимости функционального ряда. Задача нахождения области сходимости функционального ряда является весьма трудной, хотя для некоторых рядов область сходимости найти легко.

Пример:

1)

2)
2. Равномерная сходимость функционального ряда
Определение: Функциональный ряд называется мажорируемым на [a;b], если существует сходящийся числовой ряд из , так что …при . При этом числовой ряд - мажоранта функционального ряда .

Пример:

Как и числовой ряд ряд функциональный может быть записан в виде:

; где - n частичная сумма ряда, - n остаток ряда.





вычисление ряд тригонометрический тейлор

Определение: называется равномерно сходящимся на [a;b], если начиная с которого выполняется неравенство , при любом , т.е - равномерно сходится на [a;b] если , для .

Замечание: существуют сходящиеся функциональные ряды, которые не сходятся равномерно.
3. Признак Вейерштрасса о равномерной сходимости функционального ряда
Если функциональный ряд на [a;b] мажорируется сходящимся числовым рядом равномерно сходится на этом отрезке.

Свойства равномерно сходящегося функционального ряда:

Теорема 1: Если функциональный ряд ,составленный из непрерывных функций на [a;b], равномерно сходится на этом отрезке, то сумма ряда S(x) – тоже будет непрерывной функцией на [a;b].

Рассмотрим функциональный ряд

Этот ряд состоит из непрерывных степенных функций , n частичная сумма ряда

Вычислим сумму ряда:

- сходится, но S(x) – является разрывной функцией.

Вывод: S(x) не сходится равномерно.

Теорема 2: Если функциональный равномерно сходится на [a;b] его можно почленно интегрировать на любом отрезке входящем в [a;b] условием интегрируемости является непрерывность функции .

Пример:



Теорема 3: Если функциональный равномерно сходится на [a;b] и ряд составленный из производных

тоже равномерно сходится на [a;b] функциональный ряд можно почленно дифференцировать.

Пример:


4. Степенные ряды
Определение: Степенным рядом называется ряд вида , где - коэффициент степенного ряда, зависит от n и не зависит от х.

Степенной ряд является частным случаем функционального ряда, поэтому естественно поставить вопрос об области сходимости степенного ряда и его равномерной сходимости. Ответ на вопрос какой вид имеет область сходимости степенного ряда дает теорема Абеля.

Теорема Абеля:

Если сходится в точке он сходится во всех точках, удовлетворяющих неравенству . Если расходится в точке он расходится во всех точках, удовлетворяющих неравенству .

Доказательство:

Пусть сходится в точке будет сходится ряд по необходимому признаку сходимости числовая последовательность - ограничена, т.е существует число M>0, что сразу для всех n.

Возьмем любое х удовл. и рассмотрим из абсолютных величин.

Оценим общий член этого ряда:


Ряд из членов геометрической прогрессии со знаменателем сходится исходный тоже сходится по I признаку сравнения, т.к его члены меньше членов сходящегося ряда сходится абсолютно.

Пусть расходится в точке .

Возьмем любое х удовл. , нужно доказать, что расходится при любом х, удовлетворяющем .

Предположим противное: - сходится по 1 части доказательства он будет сходится в точке .

Полученное противоречие доказывает теорему.

Конец доказательства.

Из теоремы Абеля что если степенной сходится в он сходится в точке удовлетворяющей неравенству :



Рис. 1
Если расходится в точке , тогда он расходится



Вывод: существует интервал с центром в точке 0, радиусом R, внутри которого степенной ряд сходится, и вне которого расходится. Такой интервал называется интервалом сходимости степенного ряда, а R – радиусом сходимости степенного ряда. Укажем метод нахождения интервала сходимости.

5. Метод нахождения интервала сходимости степенного ряда
1) Дан , фиксируем х, получаем числовой ряд, и применим к ряду из модулей (для знакоположительности) признак Даламбера.

2) По признаку Даламбера вычисляем

- чтобы ряд сходился по признаку Даламбера.

3) Рассмотрим неравенство
<1|:



- интервал сходимости.
4) На концах интервала сходимости, в точках и нужно провести дополнительное исследование.

Замечание: Частным случаем может оказаться, что , тогда интервал сходимости вырождается в точку х=0 точка сходимости. степенной ряд сходится на всей числовой оси и интервал сходимости

Примеры:
1)

2)

3)

4)
6. Равномерная сходимость степенного ряда
Теорема: равномерно сходится на любом отрезке от целиком лежащем внутри интервала сходимости.

Доказательство:

Степенной ряд сходится в точке сходится числовой ряд

Возьмем степенной ряд мажорируется на сходящимся числовым рядом