ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 05.12.2023
Просмотров: 39
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Размещено на http://www.allbest.ru/
Министерство образования и науки российской федерации
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования
«Национальный исследовательский ядерный университет «МИФИ»
Волгодонский инженерно-технический институт - филиал НИЯУ МИФИ
Конспект лекций
по теме: «Функциональные ряды»
Волгодонск
1. Функциональные ряды
Определение: , где - функции переменной х называется функциональным рядом.
При некоторых значениях х функциональный ряд сходится, при других значениях х – расходится.
Определение: Множество значений переменной х, при которых функциональный ряд - сходится, называется областью сходимости функционального ряда. Задача нахождения области сходимости функционального ряда является весьма трудной, хотя для некоторых рядов область сходимости найти легко.
Пример:
1)
2)
2. Равномерная сходимость функционального ряда
Определение: Функциональный ряд называется мажорируемым на [a;b], если существует сходящийся числовой ряд из , так что …при . При этом числовой ряд - мажоранта функционального ряда .
Пример:
Как и числовой ряд ряд функциональный может быть записан в виде:
; где - n частичная сумма ряда, - n остаток ряда.
вычисление ряд тригонометрический тейлор
Определение: называется равномерно сходящимся на [a;b], если начиная с которого выполняется неравенство , при любом , т.е - равномерно сходится на [a;b] если , для .
Замечание: существуют сходящиеся функциональные ряды, которые не сходятся равномерно.
3. Признак Вейерштрасса о равномерной сходимости функционального ряда
Если функциональный ряд на [a;b] мажорируется сходящимся числовым рядом равномерно сходится на этом отрезке.
Свойства равномерно сходящегося функционального ряда:
Теорема 1: Если функциональный ряд ,составленный из непрерывных функций на [a;b], равномерно сходится на этом отрезке, то сумма ряда S(x) – тоже будет непрерывной функцией на [a;b].
Рассмотрим функциональный ряд
Этот ряд состоит из непрерывных степенных функций , n частичная сумма ряда
Вычислим сумму ряда:
- сходится, но S(x) – является разрывной функцией.
Вывод: S(x) не сходится равномерно.
Теорема 2: Если функциональный равномерно сходится на [a;b] его можно почленно интегрировать на любом отрезке входящем в [a;b] условием интегрируемости является непрерывность функции .
Пример:
Теорема 3: Если функциональный равномерно сходится на [a;b] и ряд составленный из производных
тоже равномерно сходится на [a;b] функциональный ряд можно почленно дифференцировать.
Пример:
4. Степенные ряды
Определение: Степенным рядом называется ряд вида , где - коэффициент степенного ряда, зависит от n и не зависит от х.
Степенной ряд является частным случаем функционального ряда, поэтому естественно поставить вопрос об области сходимости степенного ряда и его равномерной сходимости. Ответ на вопрос какой вид имеет область сходимости степенного ряда дает теорема Абеля.
Теорема Абеля:
Если сходится в точке он сходится во всех точках, удовлетворяющих неравенству . Если расходится в точке он расходится во всех точках, удовлетворяющих неравенству .
Доказательство:
Пусть сходится в точке будет сходится ряд по необходимому признаку сходимости числовая последовательность - ограничена, т.е существует число M>0, что сразу для всех n.
Возьмем любое х удовл. и рассмотрим из абсолютных величин.
Оценим общий член этого ряда:
Ряд из членов геометрической прогрессии со знаменателем сходится исходный тоже сходится по I признаку сравнения, т.к его члены меньше членов сходящегося ряда сходится абсолютно.
Пусть расходится в точке .
Возьмем любое х удовл. , нужно доказать, что расходится при любом х, удовлетворяющем .
Предположим противное: - сходится по 1 части доказательства он будет сходится в точке .
Полученное противоречие доказывает теорему.
Конец доказательства.
Из теоремы Абеля что если степенной сходится в он сходится в точке удовлетворяющей неравенству :
Рис. 1
Если расходится в точке , тогда он расходится
Вывод: существует интервал с центром в точке 0, радиусом R, внутри которого степенной ряд сходится, и вне которого расходится. Такой интервал называется интервалом сходимости степенного ряда, а R – радиусом сходимости степенного ряда. Укажем метод нахождения интервала сходимости.
5. Метод нахождения интервала сходимости степенного ряда
1) Дан , фиксируем х, получаем числовой ряд, и применим к ряду из модулей (для знакоположительности) признак Даламбера.
2) По признаку Даламбера вычисляем
- чтобы ряд сходился по признаку Даламбера.
3) Рассмотрим неравенство
<1|:
- интервал сходимости.
4) На концах интервала сходимости, в точках и нужно провести дополнительное исследование.
Замечание: Частным случаем может оказаться, что , тогда интервал сходимости вырождается в точку х=0 точка сходимости. степенной ряд сходится на всей числовой оси и интервал сходимости
Примеры:
1)
2)
3)
4)
6. Равномерная сходимость степенного ряда
Теорема: равномерно сходится на любом отрезке от целиком лежащем внутри интервала сходимости.
Доказательство:
Степенной ряд сходится в точке сходится числовой ряд
Возьмем степенной ряд мажорируется на сходящимся числовым рядом