Файл: Лекция 3 Химическая кинетика. Целью исследований химической кинетики является.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 06.12.2023

Просмотров: 31

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.




ЛЕКЦИЯ № 3 Химическая кинетика.

Целью исследований химической кинетики является:

1. экспериментальное определение скорости реакции и её зависимости от различных факторов,

2. выявление механизма реакции, т.е. числа стадий и природы образующихся в этих стадиях промежуточных веществ.

Скорость реакции измеряется количеством вещества, реагирующего в единице объёма в единицу времени – (гомогенные реакции) или на единице поверхности раздела фаз (гетерогенные реакции). Отсюда размерности скоростей реакции гомогенной ; гетерогенной .

Практически скорость гомогенной реакции может быть измерена изменением концентрации исходного вещества или продукта реакции в единицу времени. Этим процессам отвечают диаграммы:

Следует отметить, что даже в самом малом ограниченном участке приведённых кривых скорость реакции непостоянна и, поэтому, истинной скоростью реакции называется скорость в данный момент времени. Она представляет собой первую производную от концентрации по времени


Факторы, влияющие на скорость химических реакций

1. Природа веществ

2. Концентрации веществ (давление - для газофазных реакций)

3. Температура

4. Энергия активации

5. Катализаторы

6. Степень измельчённости – для гетерогенных процессов
Остановимся на некоторых из них.

1. Природа веществ.

С наибольшей скоростью реагируют вещества (неорганические и органические) с ионными, полярными ковалентными связями. Взаимодействия органических веществ с ковалентными малополярными связями протекают значительно медленнее.

2. Концентрация реагентов.

Количественная связь между скоростью и концентрацией реагирующих веществ описывается законом действия масс (К.М.Гульберг, П.Вааге, 1864-1867 г.г.), современная трактовка которого такова: при постоянной температуре скорость реакции прямо пропорциональна произведению концентраций реагирующих веществ, в степенях, равных порядку реакции по этим веществам. Порядок реакции по каждому из реагентов определяют экспериментально.


Для гомогенной реакции



кинетическое уравнение в соответствии с законом действия масс имеет вид

,

где k– константа скорости реакции, которая численно равна скорости реакции при концентрации каждого из реагентов равной 1 моль/л. Константа скоростихарактеризует скорость данного процесса при данной температуре; не зависит от концентрации реагентов, зависит от температуры – возрастает с ростом температуры. α и β – порядок реакций по веществам соответственно AиB.

Только для одностадийных реакций, при которых исходные вещества без каких-либо промежуточных соединений превращаются в продукты реакции величины α и β равны стехиометрическим коэффициентам.

Например ;

;

В случае гетерогенных реакций в уравнения закона действия масс вводятся концентрации только веществ, которые находятся в газовой фазе или в растворе. Например, для реакции C(тв) + O2 CO2 , при этом величина kхарактеризует свойства твёрдой фазы.
Порядок и молекулярность реакции.

Порядок реакции – число, равное сумме показателей степеней концентраций реагентов в кинетическом уравнении.

Порядок реакции может принимать значения от 0 до 3, включая дробные величины.

Для простоты рассмотрим только реакции целочисленного порядка.

Реакции нулевого порядка – такие реакции, скорость которых не зависит от концентрации реагента. Большая часть из них являются гетерогенными реакциями, протекающими на поверхности металла. Например, реакция разложения аммиака на H2 и N2 на поверхности вольфрама является реакцией нулевого порядка, т.е. её скорость на протяжении всего процесса не зависит от концентрации NH

3.

=k, т.е. =const; T= const

Реакции первого порядка

2H2O2 2H2O + O2 = kC(H2O2)

4AsH3 As4 + 6H2 = kC(AsH3)

Несоответствие между кажущейся молекулярностью и порядком реакции объясняется тем, что в многостадийных реакциях промежуточные превращения осуществляются с несопоставимыми скоростями. Наиболее медленная стадия определяет скорость реализации процесса превращения исходных веществ в конечные продукты. Эта стадия называется лимитирующей.

Например, 2N2O5 4NO2 + O2

Реакция протекает в две стадии:

N2O5 N2O3 + O2 – медленная

N2O5 + N2O3 4NO2 – быстрая

Скорость второй бимолекулярной реакции несравненно выше скорости первой – мономолекулярной, следовательно, скорость превращения N2O5 в NO2 определяется первой стадией, чему соответствует уравнение

= kC(N2O5)

Важной величиной является время полупревращения (τ1/2) реакции, т.е. время, в течение которого концентрация реагента уменьшается в 2 раза по сравнению с исходным значением. В фармакинетике это обозначается термином “период полуэлиминации”.

Распределение лекарственного препарата, введенного в кровоток, подчиняется кинетике первого порядка.



Подставляя значение и переходя к десятичным логарифмам, получаем




k1 – константа скорости реакции

Реакции второго порядка – самый распространённый тип реакций. Вот примеры таких реакций

2NO2 2NO + O2

H2 + I2 2HI

CO + Cl2 COCl2

2N2O 2N2 + O2

Реакции третьего порядка крайне редки.

Исходя из всего вышесказанного, можно определить размерности констант реакций различных порядков.

Порядок реакции

Размерность константы

нулевой

моль л1 время1

первый

время1

второй

л моль1 время1

третий

л2 моль2 время1


Молекулярность реакции.
Под молекулярностью реакции понимают число молекул, которые одновременно взаимодействуют, осуществляя элементарный акт химического превращения. В отличие от порядка реакции молекулярность не может быть ни нулевой, ни дробной.

Мономолекулярные – в элементарном акте химического превращения участвует одна молекула:

н-C4H10 и-C4H10

цикло-C3
H6 CH2=CH–CH3

Ca(HCO3)2 CaCO3 + H2O + CO2

Бимолекулярные – реакции, в которых химическое превращение осуществляется путём взаимодействия двух молекул:

CO + Cl2 COCl2

H2 + I2 2HI

PH3 + B2H6 PH3.BH3 + BH3

Тримолекулярные реакции – их известно очень немного. Очевидно, что вероятность одновременного соударения трёх молекул в реакционном пространстве очень мала и, поэтому, тримолекулярные реакции идут крайне медленно.

Примеры тримолекулярных реакций:

2NO + O2 2NO2

2NO + Cl2 2NOCl

Реакций более высокой молекулярности не существует.
3. Температура.

Влияние температуры на скорость химических реакций упрощённо описывается правилом Вант-Гоффа (1884 г.): при повышении температуры на каждые 10 градусов скорость гомогенной реакции возрастает примерно в 2-4 раза. Математически это правило записывается так:

,

где – скорость при температуре t1

– скорость при температуре t2

γ – температурный коэффициент Вант-Гоффа
4. Энергия активации.

Более строгую математическую зависимость скорости реакции от температуры описывает уравнение С.Аррениуса (1889 г.), который исходил из предположения, что не всякое столкновение молекул в реакционном объёме заканчивается результативно, т.е. с образованием нового вещества. По С.Аррениусу продукт реакции образуется только при столкновении молекул, обладающих некоторым избытком кинетической энергии, т.е. активных (реакционноспособных) молекул.