ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 06.12.2023
Просмотров: 72
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Для наших данных система уравнений имеет вид
10a + 1130·b = 131230
1130·a + 132100·b = 14445500
Домножим уравнение (1) системы на (-113), получим систему, которую решим методом алгебраического сложения.
-1130a -127690 b = -14828990
1130*a + 132100*b = 14445500
Получаем:
4410*b = -383490
Откуда b = -86.9592
Теперь найдем коэффициент «a» из уравнения (1):
10a + 1130*b = 131230
10a + 1130*(-86.9592) = 131230
10a = 229493.878
a = 22949.3878
Получаем эмпирические коэффициенты регрессии: b = -86.9592, a = 22949.3878
Уравнение регрессии (эмпирическое уравнение регрессии):
y = -86.9592 x + 22949.3878
Эмпирические коэффициенты регрессии a и b являются лишь оценками теоретических коэффициентов βi, а само уравнение отражает лишь общую тенденцию в поведении рассматриваемых переменных.
1. Параметры уравнения регрессии.
Выборочные средние.
Выборочные дисперсии:
=
Среднеквадратическое отклонение
Коэффициент корреляции b можно находить по формуле, не решая систему непосредственно:
1.1. Коэффициент корреляции.
Ковариация.
Рассчитываем показатель тесноты связи. Таким показателем является выборочный линейный коэффициент корреляции, который рассчитывается по формуле:
Линейный коэффициент корреляции принимает значения от –1 до +1.
Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока:
0.1 < rxy < 0.3: слабая;
0.3 < rxy < 0.5: умеренная;
0.5 < rxy < 0.7: заметная;
0.7 < rxy < 0.9: высокая;
0.9 < rxy < 1: весьма высокая;
В нашем примере связь между признаком Y и фактором X слабая и обратная.
Кроме того, коэффициент линейной парной корреляции может быть определен через коэффициент регрессии b:
2.1. Значимость коэффициента корреляции.
Выдвигаем гипотезы:
H0: rxy = 0, нет линейной взаимосвязи между переменными;
H1: rxy ≠ 0, есть линейная взаимосвязь между переменными;
Для того чтобы при уровне значимости α проверить нулевую гипотезу о равенстве нулю генерального коэффициента корреляции нормальной двумерной случайной величины при конкурирующей гипотезе H1 ≠ 0, надо вычислить наблюдаемое значение критерия (величина случайной ошибки)
и по таблице критических точек распределения Стьюдента, по заданному уровню значимости α и числу степеней свободы k = n - 2 найти критическую точку tкрит
двусторонней критической области. Если tнабл < tкрит оснований отвергнуть нулевую гипотезу. Если |tнабл| > tкрит — нулевую гипотезу отвергают.
По таблице Стьюдента с уровнем значимости α=0.05 и степенями свободы k=8 находим tкрит:
tкрит(n-m-1;α/2) = tкрит(8;0.025) = 2.752
где m = 1 - количество объясняющих переменных.
Если |tнабл| > tкритич, то полученное значение коэффициента корреляции признается значимым (нулевая гипотеза, утверждающая равенство нулю коэффициента корреляции, отвергается).
Поскольку |tнабл| < tкрит, то принимаем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициент корреляции статистически - не значим
В парной линейной регрессии t2r = t2b и тогда проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.
2.2. Интервальная оценка для коэффициента корреляции (доверительный интервал).
Доверительный интервал для коэффициента корреляции.
r∈(-1;0.925)
1.2. Уравнение регрессии (оценка уравнения регрессии).
=
Линейное уравнение регрессии имеет вид y = -86.959 x + 22949.388
Коэффициентам уравнения линейной регрессии можно придать экономический смысл.
Коэффициент регрессии b = -86.959 показывает среднее изменение результативного показателя (в единицах измерения у) с повышением или понижением величины фактора х на единицу его измерения. В данном примере с увеличением на 1 единицу y понижается в среднем на -86.959.
Коэффициент a = 22949.388 формально показывает прогнозируемый уровень у, но только в том случае, если х=0 находится близко с выборочными значениями.
Но если х=0 находится далеко от выборочных значений х, то буквальная интерпретация может привести к неверным результатам, и даже если линия регрессии довольно точно описывает значения наблюдаемой выборки, нет гарантий, что также будет при экстраполяции влево или вправо.
Подставив в уравнение регрессии соответствующие значения х, можно определить выровненные (предсказанные) значения результативного показателя y(x) для каждого наблюдения.
Связь между у и х определяет знак коэффициента регрессии b (если > 0 – прямая связь, иначе - обратная). В нашем примере связь обратная.
1.3. Коэффициент эластичности.
Коэффициенты регрессии (в примере b) нежелательно использовать для непосредственной оценки влияния факторов на результативный признак в том случае, если существует различие единиц измерения результативного показателя у и факторного признака х.
Для этих целей вычисляются коэффициенты эластичности и бета - коэффициенты.
Средний коэффициент эластичности E показывает, на сколько процентов в среднем по совокупности изменится результат у от своей средней величины при изменении фактора x на 1% от своего среднего значения.
Коэффициент эластичности находится по формуле:
Коэффициент эластичности меньше 1. Следовательно, при изменении Х на 1%, Y изменится менее чем на 1%. Другими словами - влияние Х на Y не существенно.
1.5. Эмпирическое корреляционное отношение.
Эмпирическое корреляционное отношение вычисляется для всех форм связи и служит для измерение тесноты зависимости. Изменяется в пределах [0;1].
где
Индекс корреляции.
Для линейной регрессии индекс корреляции равен коэффициенту корреляции rxy = -0.0468.
Полученная величина свидетельствует о том, что фактор x не существенно влияет на y
Для любой формы зависимости теснота связи определяется с помощью множественного коэффициента корреляции:
Данный коэффициент является универсальным, так как отражает тесноту связи и точность модели, а также может использоваться при любой форме связи переменных. При построении однофакторной корреляционной модели коэффициент множественной корреляции равен коэффициенту парной корреляции rxy.
В отличие от линейного коэффициента корреляции он характеризует тесноту нелинейной связи и не характеризует ее направление. Изменяется в пределах [0;1].
Теоретическое корреляционное отношение для линейной связи равно коэффициенту корреляции rxy.
1.6. Коэффициент детерминации.
Квадрат (множественного) коэффициента корреляции называется коэффициентом детерминации, который показывает долю вариации результативного признака, объясненную вариацией факторного признака.
Чаще всего, давая интерпретацию коэффициента детерминации, его выражают в процентах.
R2= -0.04682 = 0.00219
т.е. в 0.22% случаев изменения х приводят к изменению y. Другими словами - точность подбора уравнения регрессии - низкая. Остальные 99.78% изменения Y объясняются факторами, не учтенными в модели (а также ошибками спецификации).
Для оценки качества параметров регрессии построим расчетную таблицу (табл. 2)
x | y | y(x) | (yi-ycp)2 | (y-y(x))2 | (xi-xcp)2 |
120 | 150 | 12514.286 | 168298729 | 152875561.224 | 49 |
90 | 120 | 15123.061 | 169078009 | 225091846.106 | 529 |
150 | 180 | 9905.51 | 167521249 | 94585548.73 | 1369 |
110 | 130 | 13383.878 | 168818049 | 175665270.137 | 9 |
140 | 170 | 10775.102 | 167780209 | 112468189.296 | 729 |
100 | 120 | 14253.469 | 169078009 | 199754956.935 | 169 |
130 | 150 | 11644.694 | 168298729 | 132127987.339 | 289 |
80 | 100 | 15992.653 | 169598529 | 252576421.324 | 1089 |
110 | 130110 | 13383.878 | 13685958169 | 13624987661.974 | 9 |
100 | | 14253.469 | 172213129 | 203161389.588 | 169 |
1130 | 131230 | 131230 | 15206642810 | 15173294832.653 | 4410 |
2. Оценка параметров уравнения регрессии.
2.3. Анализ точности определения оценок коэффициентов регрессии.
Несмещенной оценкой дисперсии возмущений является величина:
S2 = 1896661854.082 - необъясненная дисперсия или дисперсия ошибки регрессии (мера разброса зависимой переменной вокруг линии регрессии).
S = 43550.68 - стандартная ошибка оценки.
Стандартная ошибка регрессии рассматривается в качестве меры разброса данных наблюдений от смоделированных значений. Чем меньше значение стандартной ошибки регрессии, тем качество модели выше.
2.4. Доверительные интервалы для зависимой переменной.
Экономическое прогнозирование на основе построенной модели предполагает, что сохраняются ранее существовавшие взаимосвязи переменных и на период упреждения. Для прогнозирования зависимой переменной результативного признака необходимо знать прогнозные значения всех входящих в модель факторов.
Прогнозные значения факторов подставляют в модель и получают точечные прогнозные оценки изучаемого показателя.
(a + bxp ± ε)
Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и Xp = 0.01
tкрит(n-m-1;α/2) = tкрит(8;0.025) = 2.752
y(0.01) = -86.959*0.01 + 22949.388 = 22948.518
Вычислим ошибку прогноза для уравнения y = bx + a
=
или
=
22948.518 ± 207414.134
(-184465.62;230362.65)
С вероятностью 95% можно гарантировать, что значение Y при x=0.01 будет находиться в интервале от -184465.62 до 230362.65.
Вычислим ошибку прогноза для уравнения y = bx + a + ε
=
22948.518 ± 239551.66
(-216603.14;262500.18)
2.5. Проверка гипотез относительно коэффициентов линейного уравнения регрессии.
2) F-статистика. Критерий Фишера.
Коэффициент детерминации R2 используется для проверки существенности уравнения линейной регрессии в целом.
Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как отношение дисперсии исходного ряда наблюдений изучаемого показателя и несмещенной оценки дисперсии остаточной последовательности для данной модели.
Если расчетное значение с k1=(m) и k2=(n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.
=
где m – число факторов в модели.
Оценка статистической значимости парной линейной регрессии производится по следующему алгоритму:
1. Выдвигается нулевая гипотеза о том, что уравнение в целом статистически незначимо: H0: R2=0 на уровне значимости α.
2. Далее определяют фактическое значение F-критерия:
или по формуле:
=
где
где m=1 для парной регрессии.
3. Табличное значение определяется по таблицам распределения Фишера для заданного уровня значимости, принимая во внимание, что число степеней свободы для общей суммы квадратов (большей дисперсии) равно 1 и число степеней свободы остаточной суммы квадратов (меньшей дисперсии) при линейной регрессии равно n-2.