Файл: Тематический план Темы лекций Классификация тс. Телевещание. Системы персонального вызова, стандарты pocsag, ermes, flex. Транкинговые (зоновые) системы связи.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 06.12.2023

Просмотров: 538

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Классификация телекоммуникационных систем

Типы телекоммуникационных систем

Системы телевещания

Системы подвижной связи

Волоконно-оптические сети

Телевидение коллективного пользования

Принципы построения систем телевещания

Оборудование систем телевещания

Системы персонального радиовызова

Структура пейджинговых систем

Пейджинговый протокол POCSAG

Пейджинговый протокол ERMES

Пейджинговый протокол FLEX

Тенденции развития пейджинговой связи

Сети транкинговой связи

Организация транкинговой радиосвязи

Классификация сетей транкинговой связи

Принципы построения транкинговых сетей

Спутниковые системы связи

Классификация систем спутниковой связи

Принципы построения спутниковых систем связи

Краткий обзор спутниковых систем мобильной связи

Спутниковый Internet

Системы сотовой связи

Принципы функционирования систем сотовой связи

Эволюция систем сотовой связи

Аналоговые системы сотовой связи

Система сотовой связи стандарта NMT-450/900

Сотовая система подвижной связи стандарта AMPS

Система сотовой подвижной связи стандарта TACS

Цифровые системы сотовой подвижной связи

Система сотовой связи стандарта GSM

Процесс преобразования сигналов в мобильной станции

Система сотовой подвижной связи стандарта D-AMPS

Цифровые системы сотовой связи с кодовым разделением каналов

Микросотовые системы мобильной связи

Структура DECT - систем

Технические аспекты DECT

Организация протоколов DECT

Профили приложений DECT

Особенности сопряжения систем DECT с внешними сетями

Проектирование сотовых систем связи

Технология проектирования ССС

Модели распространения радиоволн

Программный пакет планирования радиосетей RPS-2

Программа моделирования сети радиосвязи deciBell Planner



В процессе скачков по частоте постоянно сохраняется разнос 45 МГц между каналами приема и передачи. Всем активным абонентам, находящимся в одной соте, ставятся в соответствие непересекающиеся последовательности переключения частот, что исключает взаимные помехи при приеме сообщений абонентами. Параметры последовательности переключений частот (частотно-временная матрица и начальная частота) назначаются для каждой подвижной станции в процессе установления канала связи.


Рисунок 3.16 - Принципы формирования медленных скачков по частоте

Шифрование


Далее сигнал подвергается шифрованию сообщения по алгоритму шифрования с открытым ключом (RSA) для обеспечения безопасности передачи сообщений.

Алгоритм шифрования с открытым ключом RSA заключается в том, что каждое сообщение М разбивается на блоки фиксированной длины, и каждый блок кодируется как совокупность фиксированного числа цифр. Такой алгоритм обеспечивает высокую степень безопасности при передаче речи и исключает возможность извлечения информации из канала связи кому-либо, кроме санкционированного пользователя. На приеме сообщение расшифровывается в дешифраторе.

Алгоритм ключа шифрования хранится в модуле SIM.

Гауссовская частотная манипуляция (GMSK)


В стандарте GSM выбрана гауссовская частотная манипуляция с минимальным частотным сдвигом – GMSK. Индекс модуляции 0,3. GMSK представляет собой двоичную ЧМ с двумя соответствующими сигналу частотами, выбранными таким образом, чтобы на одном тактовом интервале между двумя частотами имелся фазовый сдвиг на 90°. Этот процесс показан на рисунках 3.17, 3.18.



Рисунок 3.17 - Принцип формирования GMSK-сигнала


Рисунок 3.18 – Формирование GMSK-сигнала
Модуляцию GMSK характеризуют следующие свойства:

  • постоянная по уровню огибающая, позволяющая использовать передающие устройства с усилителями мощность класса С;

  • узкий спектр на выходе усилителя мощности передающего устройства обеспечивающий низкий уровень внеполосного излучения;

  • хорошая помехоустойчивость канала связи.

Структурная схема сети стандарта GSM


Оборудование сетей GSM (рисунок 3.19) включает в себя: подвижные радиотелефоны, базовые станции, цифровые коммутаторы, центр управления и обслуживания, дополнительные подсистемы и устройства. Функциональное сопряжение элементов системы осуществляется с помощью ряда интерфейсов.

В рамках стандарта GSM приняты пять классов мобильных станций: от модели 1-го класса с выходной мощностью до 20 Вт, устанавливаемой на транспортных средствах, до модели 5-ro класса с максимальной выходной мощностью до 0,8 Вт (таблице 3.3). При передаче сообщений предусматривается адаптивная регулировка мощности передатчика, обеспечивающая требуемое качество связи. Подвижная и базовые станции независимы друг от друга.
Таблица 3.3 - Классификация подвижных станций

Класс модели

Максимальная мощность передатчика, Вт

Допустимые отклонения, дБ

1

20

1,5

2

8

1,5

3

5

1,5

4

2

1,5

5

0,8

1,5



Каждая подвижная станция имеет свой международный идентификационный номер (IMSI), записанный в ее памяти. Такой подход позволяет устанавливать радиотелефоны, например, в автомобилях, сдаваемых напрокат.

Каждой подвижной станции присваивается еще один международный идентификационный номер IMEI, который используется для исключения доступа к сетям GSM с помощью похищенной станции или станции, не обладающей такими полномочиями.

Оборудование подсистемы базовых станций состоит из контроллера базовых станций BSC и собственно базовых станций BTS. Один контроллер может управлять несколькими станциями. Он выполняет следующие функции: управляет распределением радиоканалов; контролирует соединения и регулирует их очередность; обеспечивает режим работы с «прыгающей» частотой, модуляцию и демодуляцию сигналов, кодирование и декодирование сообщений, кодирование речи, адаптацию скорости передачи речи, данных и сигналов вызова; определяет очередность передачи сообщений персонального вызова.



Оборудование подсистемы коммутации состоит из центра коммутации подвижной связи MSC, регистра положения HLR, регистра перемещения VLR, центра аутентификации AUC и регистра идентификации оборудования EIR. Центр коммутации подвижной связи обслуживает группу сот и обеспечивает все виды соединений, в которых нуждается подвижная станция в процессе своей работы. Он представляет собой интерфейс между сетью подвижной связи и фиксированными сетями, такими как телефонная сеть общего пользования PSTN, сети пакетной передачи PDN, цифровые сети с интеграцией служб ISDN, и обеспечивает маршрутизацию вызовов и функцию управления вызовами. Кроме этого, на MSC возлагаются функции коммутации радиоканалов, к которым относятся эстафетная передача, обеспечивающая непрерывность связи при перемещении подвижной станции из соты в соту, и переключение рабочих каналов в соте при появлении помех или неисправностей. Центр коммутации осуществляет постоянное слежение за подвижными станциями, используя регистры положения и перемещения. В регистре положения хранится та часть информации о местоположении какой-либо подвижной станции, которая позволяет центру коммутации доставить вызов. Этот регистр содержит международный идентификационный номер подвижного абонента (IMSI), который используется для опознавания подвижной станции в центре аутентификации (AUC), а также еще некоторые данные, необходимые для нормальной работы сети GSM.

Регистр перемещения - это второе основное устройство, обеспечивающее контроль за передвижением подвижной станции из соты в соту. С его помощью достигается функционирование подвижной станции за пределами контролируемой регистром положения зоны. Когда в процессе перемещения подвижная станция переходит из зоны действия одного контроллера базовых станций в зону действия другого, то она регистрируется последним, т.е. в регистр перемещения заносится новая информация. Для сохранности данных, находящихся в регистрах положения и перемещения, в случае сбоев предусмотрена защита запоминающих устройств этих регистров.

Система сотовой подвижной связи стандарта D-AMPS

Принципы построения и общие характеристики


Стандарт сотовой подвижной связи D-AMPS был разработан и принят к использованию в США в 1990 г. Необходимость его создания была обусловлена тем, что существовавшая национальная аналоговая сотовая система связи стандарта уже перестала отвечать требованиям, предъявляемым к системам подвижной связи: из-за малой пропускной способности, недостаточного качества связи, ограниченного набора услуг, отсутствия засекречивания передаваемых сообщений и т.п. В отличие от Европы, где для вновь разрабатываемой цифровой системы стандарта GSM был выделен отдельный частотный диапазон, в США не удалось обеспечить новую разработку собственной полосой частот, поэтому было принято решение о совместном использовании в одной полосе частот систем двух стандартов: аналогового AMPS и нового цифрового D-AMPS, сохранив при этом существовавший в аналоговой системе разнос частот между каналами, равный 30 кГц.

Ассоциациями TIA и CTIA были приняты три внутренних стандарта: IS-54 — на систему сотовой связи D-AMPS (ADC); IS-55 — на двухмодовую подвижную станцию, обеспечивающую связь по двум стандартам (аналоговому и цифровому); IS-56 — на базовые станции. Внедрение этих стандартов было временным шагом на пути продвижения цифровой технологии на рынок сотовой связи США. И хотя стандарт IS-54 и не совсем цифровое решение, но он оказался более прогрессивным, чем его предшественник AMPS. В 1994 г. был принят новый национальный стандарт США IS-136 на полностью цифровую систему сотовой подвижной связи, который представляет собой усовершенствованный стандарт IS-54. По своим функциональным возможностям и предоставляемым услугам этот стандарт приближается к стандарту GSM.

Стандарт D-AMPS (ADC) не принят в европейских странах, за исключением России, где он ориентирован на региональное использование. 

Состав оборудования и принципы функционирования


Состав оборудования и его функциональное назначение почти полностью повторяют соответствующие положения стандарта GSM. Структурная схема сотовой системы связи стандарта D-AMPS (ADC) представлена на рисунке 6.10. В этом стандарте для преобразования аналогового речевого сигнала в цифровую форму используется кодер VSELP. Аналоговый сигнал речевого диапазона разбивается на сегменты длительностью по 20 мс, которые преобразуются в 159 кодированных бит, передаваемых со скоростью 7,95 Кбит/с.




Рисунок 6.10. Структурная схема сотовой системы связи стандарта D-AMPS (ADC)
Далее эти данные подвергаются канальному кодированию, для чего используется сверточный код со скоростью r= 1/2. При этом пакет, поступающий от речевого кодера, состоящий из 159 бит, делится на две группы: 1 — 77 бит, 2 — 82 бита. В группе 1 осуществляется указанное выше сверточное кодирование, причем 7 бит используются для обнаружения ошибок. Биты 2-й группы передаются без кодирования, В результате преобразований в канальном кодере речевой фрагмент длительностью 20 мс представляется 260 битами, что соответствует скорости передачи 13 Кбит/с. Структурная схема канального кодирования представлена на рис. 9.2. Результирующая скорость (по результатам формирования TDMA-кадра) составляет 16,2 Кбит/с в расчете на одного абонента.



Рис. 9.2. Структурная схема канального кодирования стандарта D-AMPS (ADC)
Пакет из 260 кодированных бит в дальнейшем подвергается перемещению, принцип которого поясняется рис. 9.3. Любой речевой фрагмент разбивается на две равных части. Одна из этих частей передается в исходном окне фрагмента, а другая — в окне, сдвинутом на три окна (например, в окнах 1 и 4).



Рис. 9.3. Организация перемещения пакета кодированных 6ит в стандарте D-AMPS
Для передачи сообщений по радиоканалу используется спектрально-эффективная  /4 DQPSK-модуляция, реализуемая квадратурной схемой с прямым переносом на несущую частоту,

Структура TDMA-кадров в прямом и обратном каналах для стандарта с полускоростным речевым каналом представлена на рис. 9.4.



Рис. 9.4. Структура кадров для стандарта с полускоростным речевым каналом

В качестве базовой станции этого стандарта для систем сотовой связи может использоваться, например, компактная станция RBS 884 Indoor. Она обеспечивает максимальную гибкость при конфигурировании системы и значительную абонентскую емкость сети.