Файл: Тематический план Темы лекций Классификация тс. Телевещание. Системы персонального вызова, стандарты pocsag, ermes, flex. Транкинговые (зоновые) системы связи.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 06.12.2023
Просмотров: 545
Скачиваний: 1
СОДЕРЖАНИЕ
Классификация телекоммуникационных систем
Типы телекоммуникационных систем
Телевидение коллективного пользования
Принципы построения систем телевещания
Оборудование систем телевещания
Системы персонального радиовызова
Тенденции развития пейджинговой связи
Организация транкинговой радиосвязи
Классификация сетей транкинговой связи
Принципы построения транкинговых сетей
Классификация систем спутниковой связи
Принципы построения спутниковых систем связи
Краткий обзор спутниковых систем мобильной связи
Принципы функционирования систем сотовой связи
Аналоговые системы сотовой связи
Система сотовой связи стандарта NMT-450/900
Сотовая система подвижной связи стандарта AMPS
Система сотовой подвижной связи стандарта TACS
Цифровые системы сотовой подвижной связи
Система сотовой связи стандарта GSM
Процесс преобразования сигналов в мобильной станции
Система сотовой подвижной связи стандарта D-AMPS
Цифровые системы сотовой связи с кодовым разделением каналов
Микросотовые системы мобильной связи
Особенности сопряжения систем DECT с внешними сетями
Проектирование сотовых систем связи
Модели распространения радиоволн
Цифровые системы сотовой связи с кодовым разделением каналов
Принципы кодового разделения каналов
Принципы кодового разделения каналов связи (CDMA – Code division Multiple Access) основаны на использовании широкополосных сигналов (ШПС), полоса которых значительно превышает полосу частот, необходимую для обычной передачи сообщений, например, в узкополосных системах с частотным разделением каналов (FDMA). Основной характеристикой ШПС является база сигнала, определяемая как произведение ширины его спектра F на его длительность Т:
(10.1)
В цифровых системах связи, передающих информацию в виде двоичных символов, длительность ШПС Т и скорость передачи сообщений С связаны соотношением Т=1/С. Поэтому база сигнала В=F/C характеризует расширение спектра ШПС относительно спектра сообщения. Расширение спектра частот передаваемых сообщений может осуществляться двумя методами или их комбинацией:
-
прямым расширением спектра частот; -
скачкообразным изменением частоты несущей.
При первом способе узкополосный сигнал (рис. 10.1) умножается на псевдослучайную последовательность (ПСП) с периодом повторения Т, включающую N бит последовательности длительностью 0 каждый. В этом случае база ШПС численно равна количеству элементов ПСП В=Т/0 =N.
Скачкообразное изменение частоты несущей (рис. 10.2), как правило, осуществляется за счет быстрой перестройки выходной частоты синтезатора в соответствии с законом формирования псевдослучайной последовательности.
Прием ШПС осуществляется оптимальным приемником, который для сигнала с полностью известными параметрами вычисляет корреляционный интеграл
(10.2)
где х(t) – входной сигнал, представляющий собой сумму полезного сигнала u(t) и помехи n(t) (в данном случае белый шум) Затем величина Z сравнивается с порогом Z0.
Значение корреляционного интеграла находится с помощью коррелятора (рис. 10.3) или согласованного фильтра. Коррелятор осуществляет «сжатие» спектра широкополосного входного сигнала путем умножения его на эталонную копию u(t) с последующей фильтрацией в полосе 1/Т, что и приводит к улучшению отношения сигнал/шум на выходе коррелятора в В раз по отношению ко входу. При возникновении задержки между принимаемым и опорным сигналами, амплитуда выходного сигнала коррелятора уменьшается и приближается к нулю, когда задержка становится равной длительности элемента ПСП
0. Это изменение амплитуды выходного сигнала коррелятора определяется видом автокорреляционной функции АКФ при совпадающих входной и опорной ПСП и взаимнокорреляционной функции ВКФ при отличающихся входной и опорной ПСП. На рис. 10.4 показана структура М-последовательности с N=15(а), вид её периодической АКФ(б) и апериодической АКФ(в), то есть периодически непродолжающейся во времени.
Выбирая определённый ансамбль сигналов с “хорошими” взаимными и автокорреляционными свойствами, можно обеспечить в процессе корреляционной обработки (свертки ШПС) разделение сигналов. На этом основан принцип кодового разделения каналов связи.
В
существующих и разрабатываемых системах сотовой связи преимущественно используются ШПС, формирование которых осуществляется по методу расширения спектра. В этом случае адресность абонентов определяется формой псевдослучайной последовательности, используемой для расширения полосы спектра частот. Радиосигнал, сформированный в этом случае (рис. 10.1) называется фазоманипулированным широкополосным сигналом (ФМн ШПС). Спектр частот ФМн ШПС на выходе формирующего устройства и на выходе усилителя мощности передатчика после фильтрации показаны на рис. 10.5.
Доминирующее значение в выборе вида ПСП для формирования ШПС в системах подвижной радиосвязи играют, прежде всего, взаимные и автокорреляционные характеристики ансамбля сигналов, его объём, простота реализации устройства формирования и «сжатия» (свертки) сигналов в приёмнике. В этой связи для формирования ФМн ШПС преимущественно используются линейные М-последовательности и их сегменты. Для расширения объёма ансамбля сигналов часто используют составные ПСП, сформированные, например, на основе М-последовательностей и последовательностей Уолша.
С
оздание систем сотовой подвижной радиосвязи с кодовым разделением абонентов сдерживалось отсутствием технических и технологических возможностей по реализации малогабаритных, малопотребляющих и многофункциональных устройств «сжатия» ШПС. В настоящее время эти проблемы успешно решены американскими фирмами Qualcomm, Inter Digital, Motorola. На основе предложений фирмы Qualcomm в США принят стандарт IS-95 на систему сотовой подвижной радиосвязи с кодовым разделением каналов. В рамках европейской программы RACE разрабатывается проект CODIT (Code Division Testbed), основной целью которого является изучение потенциальных возможностей системы многостанционного доступа с кодовым разделением каналов как метода доступа для третьего поколения систем сотовой подвижной связи UMTS/FPLMTS.
Сотовая система подвижной радиосвязи с кодовым разделением каналов стандарта IS-95
Сотовая система подвижной радиосвязи общего пользования с кодовым разделением каналов впервые была разработана фирмой Qualcomm (США).Основная цель разработки состояла в том, чтобы увеличить ёмкость системы сотовой связи по сравнению с аналоговой не менее чем на порядок и соответственно увеличить эффективность использования выделенного спектра частот.
Технические требования к системе CDMA сформированы в ряде стандартов Ассоциации промышленности связи (TIA):
-
IS-95- CDMA-радиоинтерфейс; -
IS-96- CDMA-речевые службы; -
IS-97- CDMA-подвижная станция; -
IS-98- CDMA базовая станция; -
IS-99- CDMA- служба передачи данных.
Система CDMA фирмы Qualcomm рассчитана на работу в диапазоне частот 800 МГц, выделенном для сотовых систем стандартов AMPS, N-AMPS и D-AMPS. (Стандарты TIA IS-19, IS-20; IS-54; IS-55, IS-56, IS-88, IS-89, IS-90, IS-553.)
Безопасность или конфиденциальность является свойством технологии CDMA, поэтому во многих случаях операторам сотовых сетей не потребуется специального оборудования шифрования сообщений.
Система CDMA Qualcomm построена по методу прямого расширения спектра частот на основе использования 64 последовательностей, сформированных по закону функций Уолша. Для передачи речевых сообщений выбрано речепреобразующее устройство с алгоритмом CELP со скоростью преобразования 8000 бит/с (9600 бит/с в канале). Возможны режимы работы на скоростях 4800, 2400 и 1200 бит/с.
В каналах системы CDMA применяется свёрточное кодирование со скоростью 1/2 (в каналах от базовой станции) и 1/3 (в каналах от подвижной станции), декодер Витерби с мягким решением, перемежение передаваемых сообщений. Общая полоса канала связи составляет 1,25 МГц. Основные характеристики стандарта CDMA Qualcomm и технические параметры оборудования сетей приведены в таблице 10.1.
В стандарте используется раздельная обработка отраженных сигналов, приходящих с разными задержками, и последующее их весовое сложение, что значительно снижает отрицательное влияние эффекта многолучевости. При раздельной обработке лучей в каждом канале приёма на базовой станции используется 4 параллельно работающих коррелятора, а на подвижной станции – 3 коррелятора. Наличие параллельно работающих корреляторов позволяет осуществить мягкий режим “эстафетной передачи” при переходе из соты в соту.
Мягкий режим «эстафетной передачи» происходит за счёт управления подвижной станцией двумя или более базовыми станциями. Транскодер, входящий в состав основного оборудования, проводит оценку качества приема сигналов от двух базовых станций последовательно кадр за кадром, как показано на рис. 10.6. Процесс выбора лучшего кадра приводит к тому, что результирующий сигнал может быть сформирован в процессе непрерывной коммутации и последующего «склеивания» кадров, принимаемых разными базовыми станциями, участвующими в «эстафетной передаче». Мягкое переключение обеспечивает высокое качество приёма речевых сообщений и устраняет перерывы в сеансах связи, что имеет место в сотовых сетях связи других стандартов.
На рис. 10.7 приведена обобщённая структурная схема сети сотовой подвижной радиосвязи CDMA, основные элементы которой (BTS, BSC, MSC , ОMC) аналогичны, используемым в сотовых сетях с частотным (NMT-450/900, AMPS, TACS) и временным разделением каналов (GSM, DCS-1800, PCS-1900, D-AMPS, JDC).
Таблица 10.1
Технический параметр | Значение |
Диапазон частот передачи MS | 824,040-848,970 МГц |
Диапазон частот передачи BTS | 869,040-893,970 МГц |
Относительная нестабильность несущей частоы BTS | 5*10-8 |
Относительная нестабильность несущей частоы МS | 2,5*10-6 |
Вид модуляции несущей частоты | QPSK (BTS), O-QPSK (MS) |
Ширина спектра излучаемого сигнала: по уровню минус 3 дБ по уровню минус 40 дБ | 1,25 МГц 1,50 МГц |
Тактовая частота ПСП | 1,2288МГц |
Количество элементов в ПСП для BTS для MS | 32768 бит 242-1 бит |
Количество каналов BTS на 1 несущей частоте | 1 пилот канал 1 канал сигнализации 7 каналов персональн. вызова 55 каналов связи |
Количество каналов MS | 1 канал доступа 1 канал связи |
Скорость передачи данных: в канале синхронизации в канале перс. вызова и доступа в каналах связи | 1200 бит/с 9600, 4800 бит/с 9600, 4800, 2400, 1200 бит/с |
Кодирование в каналах передачи BTS (канал синх., перс. вызова, связи) | сверточный код r=1/2 длина кодового огр. К=9 |
Кодирование в каналах передачи МS | сверточный код r=1/3 К=9 64-ичное кодирование ортогональными сигналами Уолша |
Требуемое для приёма отношение энергии бита информации к спектральной плотности шума (Е6 /N0) | 6-7дБ |
Максимальная эффективная излучаемая мощность ВТS | до 50 Вт |
Максимальная эффективная излучаемая мощность MS: 1 класс 2 класс 3 класс | 6,3 Вт 2,5 Вт 1,0 Вт |
Точность управления мощностью передатчика MS | 0,5 дБ |