ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 06.12.2023
Просмотров: 40
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Система эритроцитов (эритрон) и ее нарушения
В норме содержание эритроцитов в периферической крови у мужчин составляет в среднем (4,0-5,1)-1012/л, у женщин - (3,7- 4,7)-1012/л; уровень гемоглобина соответственно 130-160 г/л и
120-140 г/л (см. табл. 1).
У здоровых людей количество образующихся в костном мозгу эритроцитов равно числу выходящих из циркуляции (гемолизирующихся) клеток, в связи с чем уровень их в крови практически постоянен. При различных заболеваниях эритроцитарный баланс может нарушаться, что приводит к увеличению числа эритроцитов в крови (эритроцитозу) или к его уменьшению (анемии).Примечание. MCV - средний объем эритроцитов; MCH - среднее (относительное) содержание гемоглобина в эритроците; MCHC - средняя концентрация (абсолютное содержание) гемоглобина в эритроците.
Эритропоэз — процесс структурной, метаболической и функцио-нальной дифференцировки, начиная от образования полипотентной ство-ловой клетки и заканчивая формированием зрелого эритроцита.
Различают мегало- и эритробластический тип кроветворения.
Мегалобластический эритропоэзсводится к следующему. В процес-се созревания клеток в их цитоплазме постепенно накапливается гемогло-бин (Нb), происходит конденсация ядерного хроматина, а также инволю-ция ядра. Характерной особенностью этого типа кроветворения является ранняя гемоглобинизация при сохранении еще нежной структуры ядра. В зависимости от степени гемоглобинизации различают базофильные, полихроматофильные и оксифильные (ортохромные) клетки. Исчезнове-ние ядра происходит обычно путем кариорексиса и последующего лизиса его остатков
Система эритроцитов (эритрон) и ее нарушения
Вся масса эритроидных клеток организма, включая ядерные костномозговые формы, ретикулоциты и зрелые эритроциты, объединяется понятием эритрон. Таким образом, эритрон включает клетки родоначальные, пролиферирующие, созревающие, зрелые, специфически функционирующие и разрушающиеся. Он представляет собой функциональную систему, выполняющую высокоспециализированную газотранспортную функцию, которая обусловливает производство и поддержание на достаточном уровне общей массы эритроцитов, содержащих гемоглобин и обеспечивающих ткани кислородом.
Структурно-функциональная характеристика эритрона в норме и при патологии
Эритропоэтическая ткань организма человека занимает 20–30 % костного мозга. В нормальных условиях клетки крови первых V классов нахо-дятся в кроветворных органах, а клетки VI класса — в периферической крови. Они могут быть недепонированными (находятся в циркулирующей периферической крови) и депонированными (располагаются в кровяных депо).
У здорового человека соотношения объемов отдельных частей эритрона стабильны, что обеспечивается постоянным пополнением истощаю-щегося пула клеток, причем общее число циркулирующих эритроцитов со-ставляет (25–30)⋅1012. При продолжительности жизни эритроцита 120 дней костный мозг должен продуцировать в течение часа 1010 эритроцитов. Для поддержания постоянного количества эритроцитов, циркулирующих в крови, такое же их количество должно выводиться из кровотока или разрушаться.
При изменении условий жизнедеятельности общий эритропоэз увеличивается или уменьшается в зависимости от потребностей организма в эритроцитах в данный момент. Количество эритроидных клеток, созревающих до стадии эритроцита, характеризует величину эффективного эритропоэза, а продуцирование функционально неполноценных эритроцитов и процесс внутримозгового разрушения эритроидных ядросодержащих клеток обозначается неэффективным эритропоэзом. Последний в нормальных условиях представляет собой один из физиологических механизмов регуляции равновесия процессов, происходящих в системе эритрона в условиях меняющихся потребностей организма в эритроцитах. У здоровых людей в костном мозге разрушается 5–20 % эритроидных предшественни-ков; при анемиях различного происхождения интенсивность неэффективного эритропоэза достигает 50 % и более. При этом разрушаются как ста-рые, функционально неполноценные эритроциты, так и ядросодержащие клетки костного мозга.
Эритроцит — специализированная клетка периферической крови, содержащая важнейший дыхательный пигмент Нb и обеспечивающая доставку кислорода от легочных альвеол ко всем клеткам тела и углекислоты от клеток к легким. Благодаря форме эритроцитов, для них харак-терно высокое соотношение поверхности и объема, в связи с чем в них любая молекула
Нb находится близко к поверхности, что обеспечивает максимально ускоренный газообмен.
Важным свойством эритроцитов является их способность к деформации: циркулируя с кровью, они взаимодействуют друг с другом, со стенками сосуда и без потери нативности могут удлиняться, перегибаться, закручиваться. Форма эритроцитов и их высокая деформируемость играют важную роль в выполняемых ими функциях и имеют непосредственное отношение к газообмену. Объем эритроцита, соответствующий диску, может умеренно изменяться без растяжения клеточной мембраны, что и обусловливает его высокую деформируемость. Поэтому от формы эрит-роцитов частично зависит их стойкость к осмотическому гемолизу, к аутогемолизу, в меньшей степени — к механической травме. Белки цитоскеле-та и плазматической мембраны эритроцита (спектрин, анкерит, аддуцин, гликоферин) обеспечивают механические свойства и поддерживают его форму. При дефектах этих белков возникают аномалии формы эритроцитов и укорачивается срок их жизни.
Старение эритроцитов связано со снижением активности их ферментных систем. Начиная с 60-го дня после выхода эритроцитов в перифериче-скую кровь, в них прогрессирующе снижается активность глюкозо-6-фосфаткиназы и других ферментов, что приводит к уменьшению энергети-ческой обеспеченности эритроцитов АТФ. Кроме того, нарушается способность эритроцитов поддерживать градиент натрия и калия, существующий в норме на их мембране, в последней накапливается кальций, увеличивается содержание метгемоглобина и окисленного глутатиона. По мере старения эритроцит принимает сферическую форму. В конце сво-его жизненного цикла эритроциты характеризуются меньшими размерами, большей концентрацией гемоглобина, сниженным содержанием сиаловой кислоты, липидов в плазматической мембране, экспрессией особого гликопротеина-антигена, не характерного для молодых и зрелых клеток, неспецифического антигена стареющих клеток (АСК). Способность сфероцитарного эритроцита к деформации, стойкость к внешним воздействи-ям снижаются. Стареющие сфероцитарные эритроциты, как и сфероциты в условиях патологии, не способны проникать через внутриэндотелиальные синусы селезенки. Появление АСК служит «сигналом» для онтогенетиче-ски запрограммированного устранения состарившихся элементов крови, в результате чего возникает иммунный ответ (физиологические антитела к АСК постоянно присутствуют в сыворотке крови в небольших титрах). Состарившиеся эритроциты подвергаются иммунно опосредованному гемолизу и фагоцитозу. Ежедневно в норме разрушается около 200,0⋅Г/л (0,8 %) эритроцитов и столько же выходит в периферическую кровь.
Разрушению (эритродиерезу) подвергается, кроме стареющих эритро-цитов, часть ядросодержащих клеток костного мозга (внутрикостномозго-вой неэффективный эритропоэз), функционально неполноценные эритро-циты, вышедшие в периферическую кровь (периферический компонент неэффективного эритропоэза). В нормальных условиях эритродиерез происходит внутри мононуклеарных фагоцитов. Дефектные эритроциты подвергаются диерезу в селезёнке.
Выделяют три основных механизма разрушения эритроцитов:
-
Фагоцитоз (внутриклеточный, внесосудистый гемолиз), который характерен для физиологического гемолиза. Существует порог интенсив-ности внутриклеточного гемолиза, при котором последний не уравновеши-вается эритропоэзом — он соответствует сроку жизни эритроцитов менее 18 дней. Таким образом, очень ранняя экспрессия АСК на эритроцитах, совершающаяся при их повреждении, наследственных дефектах, при мега-лобластическом кроветворении способствует развитию гемолитических анемий. -
Фрагментация как способ гибели эритроцитов возникает при меха-ническом воздействии на них в процессе их микроциркуляции; при этом появляются обломки клеток. -
Внутрисосудистый (внеклеточный) гемолиз связан с воздействием гемолитических ядов, химических и физических факторов, паразитов и т. п. В норме представлен минимально. Для гемолизированных эритроцитов ха-рактерны снижение соотношения их поверхности и объема, нарушение це-лостности мембраны, экспрессирование неоантигенов, возрастание вязкости цитоплазмы, обусловленное агрегацией гемоглобина, дегидратацией клеток.
Эритропоэз — процесс структурной, метаболической и функциональной дифференцировки, начиная от образования полипотентной стволовой клетки и заканчивая формированием зрелого эритроцита.
Различают мегало- и эритробластический тип кроветворения.
В периферической крови в норме содержание эритроцитов составляет 4-5*1012/л, концентрация гемоглобина – 130-167 г/л.
Патологические изменения эритроцитов
Изменения эритроцитов могут быть количественными (уменьшение, увеличение числа) и качественными (изменение величины, формы, окраски, появление включений).
Различают регенеративные формы эритроцитов, появление которых в периферической крови свидетельствует о хорошей или повышенной кроветворной функции костного мозга, и дегенеративные, являющиеся показателем извращенного, нарушенного кроветворения.
Регенеративные формы эритроцитов появляются в периферической крови после острой кровопотери, при остром гемолитическом кризе, успешном лечении целого ряда анемий. Об усилении процессов регенерации свидетельствуют:
- появление ядерных предшественников эритроцитов — полихроматофильных и оксифильных нормобластов (нормоцитов);
- увеличение количества полихроматофилов — полихроматофилия;
- увеличение содержания ретикулоцитов (норма 0,2–1,0 %) — ретикулоцитоз.
Количество ретикулоцитов периферической крови является важным показателем функционального состояния костномозгового эритропоэза, регенераторных возможностей эритрона, поскольку повышенное поступление ретикулоцитов из костного мозга обычно сочетается с усилением физиологической регенерации эритроцитов. Однако иногда повышенный периферический ретикулоцитоз не является признаком повышенного эритропоэза, а повышенного эритропедеза — диапедеза эритроцитов из костного мозга в циркулирующую кровь (например, при раздражении костного мозга раковыми метастазами); поэтому, оценивая периферический ретикулоцитоз, следует иметь в виду, что он имеет положительное значение лишь тогда, когда он преходящ и предшествует повышению количества эритроцитов. Ретикулоцитоз, который держится длительно и не сопровождается повышением количества эритроцитов, не исключает гипопластическое состояние костного мозга.
Дегенеративные формы эритроцитов приведены в таблице.
Дегенеративные формы эритроцитов
Название и описание клетки | Клиническое проявление | |
Изменение размеров (анизоцитоз) | | |
Микроцит. Гипохромия | При железодефицитных анемиях и талассемии | |
Макроцит (круглой или овальной формы). Бледный участок в центре выражен слабо | При мегалобластных анемиях, алкогольных поражениях печени, после спленэктомии | |
Мегалоцит. Диаметр 12–15 мкм, нередко неправильной формы, интенсивно окрашен | При мегалобластных анемиях | |
Анизоцитоз обнаруживается практически при всех видах анемий, степень его выраженности соответствует тяжести анемии | | |
Изменения формы (пойкилоцитоз, часто сочетается с анизоцитозом) | | |
Пойкилоциты. Клетки причудливой формы — вытянутые, грушевидные, сферические и др. | При мегалобластных, железодефицитных анемиях, талассемии, ожогах и др. | |
Сфероцит, может быть микро-, нормо-, макроцитарным. Бледная область в центре отсутствует. Чаще микроцит . | При наследственном сфероцитозе и других гемолитических анемиях, при которых мембрана эритроцита удаляется в селезёнке или РЭС, а количество гемоглобина остается постоянным | |
Эхиноцит — зубчатая клетка, напоминающая по форме морского ежа | При уремии, раке желудка, пептической язве, осложненной кровотечением, трансфузии крови, содержащей старые эритроциты, иногда — артефакт | |
Акантоцит — листоподобная, шпорообразная клетка. Имеет выпячивания различной величины, располагающиеся на поверхности клетки на разных расстояниях друг от друга | При алкогольном поражении печени, гипосплении | |
Дегмацит («надкусанная» клетка). Эритроцит выглядит так, будто его надкусили | При дефиците Г-6-ФДГ, нестабильности гемоглобина, при удалении телец Гейнца с частью мембраны и гемоглобина в РЭС | |
Шистоцит (каскообразная клетка, фрагментированная клетка) | При гемолитических анемиях любой этиологии с внутрисосудистым гемолизом | |
Дрепаноцит — серповидная клетка | При серповидноклеточной анемии | |
Овалоцит (эллиптоцит). Клетка овальной или удлиненной формы. Бледность в центре не видна. Аномалии гемоглобина или мембраны приводят к изменению формы клетки | При наследственном эллиптоцитозе (овалоцитозе), талассемии, мегалобластной анемии, дефиците железа | |
Кодоцит (тороцит) — мишеневидный эритроцит, колоколоподобная клетка. Если смотреть на клетку сбоку, то она похожа на две соединенные мексиканские шляпы | При талассемии, дефиците железа, после удаления селезёнки, болезнях печени. Осмотическая резистентность клеток повышена, что обусловлено утолщением мембраны | |
Стоматоцит (ротообразная клетка) — чашеобразный эритроцит | При наследственных сфероцитозе и стоматоцитозе, алкоголизме, патологии печени, при действии лекарственных препаратов | |
Дакриоцит (слёзоподобная клетка, напоминает каплю или головастика) | При миелофиброзе, талассемии, анемии при миелофтизе, миелоидной метаплазии | |
Пузырчатая клетка. Выглядит так, будто на ее поверхности имеется пузырек или волдырь | При иммунной гемолитической анемии. Механизм образования неясен | |
Внутриклеточные включения в эритроциты | | |
Тельца Жолли (Хауэлла–Жолли). Остаток ядра в виде 1–2–3 базофильных глыбок | При отсутствии селезёнки, интенсивном гемолизе, мегалобластной анемии, свинцовой интоксикации; результат нарушения инволюции ядра | |
Кольца Кабо (Кэбота). Остаток ядерной оболочки в виде кольца, восьмерки, образуются из митотических нитей или ядерной мембраны | При мегалобластной, гемолитических анемиях, свинцовой интоксикации; результат нарушения инволюции ядра | |
Базофильная зернистость (пунктация). Рассеянные гранулы синего цвета, выявляемые при окраске по Романовскому–Гимзе | При свинцовой и других интоксикациях, сидеробластных и мегалобластных анемиях, талассемии; остатки базофильной субстанции цитоплазмы — результат нарушения ее инволюции | |
Тельца Гейнца. Синие округлые, единичные или множественные включения, образованные из денатурированного гемоглобина. Выявляются при суправитальной окраске кристал-виолет-ацетил-фенил-гидразином | При недостаточности Г-6-ФДГ эритроцита, действии гемолитических ядов | |
Тельца Паппенгеймера (сидерозные гранулы) — темно-синие гранулы трехатомного железа. Содержащие их эритроциты — сидероциты. Увеличение сидерозных гранул — признак переполнения организма железом или неспособности его утилизировать. Отсутствие — признак железодефицита | Увеличение при сидеробластной, гемолитической анемиях, гиперспленизме; отсутствие при железодефицитных анемиях | |
Изменения окраски | ||
Гипохромия — бледно окрашенные эритроциты, имеют форму кольца (анулоциты). Уменьшение ССГ (МСН) | Следствие ненасыщения нормальных по объему эритроцитов гемоглобином либо микроцитоза (ложная гипохромия). Показатель дефицита железа в организме или его неусвоения эритроцитами при нарушении синтеза гема. При всех железодефицитных и железонасыщенных (сидеробластных, сидероахрестических) анемиях | |
Гиперхромия — интенсивно окрашенные эритроциты. Всегда сочетается с макромегалоцитозом | При мегалобластных и макроцитарных анемиях |