Файл: Федеральное агентство по образованию иркутский государственный технический университет.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 09.12.2023
Просмотров: 793
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
СОДЕРЖАНИЕ
торцевой поверхности (при наличии пригонки)
Расчетные сопротивления срезу и растяжению болтов
Основные размеры элементов подкрановых балок
Расчетные сопротивления растяжению фундаментных болтовRba
Рис. 9.1 К определению расчетных усилий в разрезной подкрановой балке:
г – схема загружения балки одним краном для определения прогиба
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
Кафедра строительных конструкций
В.Г. Темников
МЕТАЛЛИЧЕСКИЕ КОНСТРУКЦИИ
______________________________________________
Курс лекций
___________________________________________________
ИЗДАТЕЛЬСТВО
Иркутского государственного технического университета
2007
Глава 1
ОБЩИЕ ПОЛОЖЕНИЯ ПРОЕКТИРОВАНИЯ
МЕТАЛЛИЧЕСКИХ КОНСТРУКЦИЙ
_____________________________________________________________
-
Достоинства и недостатки металлических конструкций
Металлические конструкции применяются в инженерных сооружениях в виде стержневых или сплошных систем: в одноэтажных и многоэтажных производственных зданиях; большепролетных покрытиях различных систем зданий и сооружений (спортивные сооружения, крытые рынки, театры, выставочные павильоны, ангары, судостроительные эллинги, авиасборочные цехи и др.); мостах и эстакадах; высотных сооружениях (телевизионные башни, мачты, опоры воздушных линий электропередачи, вытяжные башни, нефтяные вышки, дымовые и вентиляционные трубы, промышленные этажерки, геодезические вышки, надшахтные копры и многие другие сооружения); каркасах гражданских многоэтажных зданий; крановых и других подвижных конструкциях (мостовые, башенные и козловые краны, краны-перегружатели, крупные экскаваторы, затворы и ворота гидротехнических сооружений); листовых конструкциях (резервуары различного назначения, газгольдеры, бункеры, силосы, трубопроводы большого диаметра, конструкции доменного и химического производств); конструкции уникального назначения (радиотелескопы, антенны космической связи).
Такой широкий диапазон применения металлических конструкций, воспринимающих большие нагрузки от собственного веса и оборудования
, имеющие большие пролеты и высоту (для листовых конструкций необходимость обеспечения плотности), обусловлен рядом их достоинств и, в первую очередь, надежностью, высокой прочностью и легкостью (рис. 1.1).
Надежность металлических конструкций обеспечивается близким совпадением их действительной работы (распределение напряжений и деформаций) с теоретическими расчетными предпосылками об упругой и упруго-пластической работе материала, обоснованными основными положениями сопротивления материалов и теории упругости и пластичности. Сталь – изотропный материал, имеет мелкозернистую структуру с одинаковыми механическими свойствами во всех направлениях.
Легкость. Из всех изготовляемых в настоящее время несущих конструкций металлические конструкции являются относительно наиболее легкими, несмотря на высокую плотность стали (ρ = 7850 кг/м3) по сравнению с бетоном (ρ = 2400 кг/м3) и даже древесиной (ρ = 500 кг/м3).
За показатель легкости с принимают отношение плотности материала ρ к его прочности Ry. Чем меньше значение с, тем относительно легче конструкция.
Конструкции из алюминиевых сплавов, обладающих прочностью близкой к прочности малоуглеродистой стали, а также плотностью, примерно в три раза меньшей, чем сталь ( =2700 кг/м3), имеют наименьшее значение показателя с.
Рис. 1.1. Достоинства и недостатки металлических конструкций
На рис. 1.2 приведена сравнительная легкость конструкции из различных материалов (коэффициент с для алюминиевого сплава Д16Т принят за единицу).
Индустриальность. Металлические конструкции в основной своей массе изготавливаются на заводах, оснащенных современным специальным оборудованием, а механизированный монтаж на месте возведения сооружения ускоряет ввод его в эксплуатацию. Все это исключает или до минимума сокращает тяжелый ручной труд.
Непроницаемость. Металлы облают не только значительной прочностью, но и высокой плотностью – непроницаемостью для газов и жидкостей. Плотность металла и его соединений, осуществляемых с помощью сварки, является необходимым условием для изготовления листовых конструкций.
Ремонтопригодность. Применительно к стальным конструкциям наиболее просто решаются вопросы усиления, технического перевооружения и реконструкции. Хорошая приспособленность для крепления различных коммуникаций, нового технологического оборудования к элементам существующего каркаса с помощью сварки.
Сохранность металлического фонда – возможность использования металлоконструкций, отслуживших свой срок в результате физического и морального старения (возврат в отрасли хозяйства в виде металлического лома).
c = ρ/Ry
Рис. 1.2. Относительная легкость конструкции
из различных материалов
Лучшая приспособленность металлоконструкций для тяжелых условий работы (высокая температура до +200ºС, динамические и циклические нагружения, большие нагрузки).
Меньшая подверженность механическим повреждениям в процессе перевозки, монтажа и эксплуатации.
Меньшая зависимость себестоимости от серийности, благодаря сравнительно малой стоимости вспомогательных приспособлений при изготовлении и монтаже. Возможность быстро переналаживать оснастку изготовления.
Высокие эстетические свойства, возможность создания самых различных форм.
Металлические конструкции имеют и недостатки, для нейтрализации которых необходимы специальные меры.
Коррозия – разрушение металла вследствие химического или электрохимического взаимодействия с внешней средой. Металлические конструкции обладают сравнительно слабой коррозийной стойкостью, особенно в агрессивных условиях. Сталь, не защищенная от контакта с влагой в сочетании с вредными газами, солями, пылью, окисляется и становится непригодной к эксплуатации.
Значительно выше коррозийная стойкость у алюминиевых сплавов, применяемых в строительстве, благодаря образованию на поверхности прочной оксидной пленки. Хорошо сопротивляется коррозии чугун.
Повышение коррозийной стойкости металлических конструкций достигается включением в сталь специальных легирующих элементов (относительно дорогой способ), периодическим нанесением на поверхность изделий защитных лакокрасочных покрытий (принятый у нас основной способ), а также выбором при проектировании рациональной конструктивной формы элементов, удобной для очистки и защиты (без щелей и пазух, где могут скапливаться влага и пыль).
Небольшая огнестойкость. Металлические конструкции имеют сравнительно низкий предел огнестойкости, оцениваемый временем, в течение которого конструкция сохраняет свою несущую способность.
У стали при температуре t = 200ºC начинает уменьшаться модуль упругости Е, а при t = 600ºC (алюминиевые сплавы при t = 300ºC) она полностью переходит в пластическое состояние, деформируется и теряет свою несущую способность. Поэтому металлические конструкции зданий, опасные в пожарном отношении (склады с горючими и легковоспламеняющимися материалами, жилые и общественные здания и т.п.) должны быть защищены путем устранения непосредственного контакта конструкций с открытым огнем или сильно нагретыми частями оборудования (устройство подвесных потолков, огнестойких облицовок, обмазка специальными составами, в отдельных случаях – устройство огнезащитных экранов).
-
Основные требования, предъявляемые к металлическим
конструкциям
Блок основных требований, предъявляемых к металлическим конструкциям, представлен на рис. 1.3. Большинству требованиям строительные конструкции должны соответствовать на стадиях проектирования, изготовления, транспортирования, монтажа и эксплуатации.
Главное требование, не только к металлическим конструкциям, – это соответствие эксплуатационному назначению, т.е. обслуживанию того технологического процесса, который должен протекать в проектируемом здании или сооружении. При этом должны быть обеспечены удобство и безопасность с наименьшими затратами для поддержания конструкций в надежном состоянии. Это требование в основном определяет систему, конструктивную форму сооружения и выбор материала для него, Выполнению этого требования подчинены все задачи проектирования.
Технические требования сводятся к обеспечению прочности, устойчивости, жесткости. Эти требования определяются СНиП на проектирование металлоконструкций. Сюда же относится и требование надежности, которое заключается в том, что конструкция должна безотказно работать в течение заданного расчетного периода эксплуатации, и долговечности конструкции, определяемой сроками ее физического и морального износа.
Требования
Технические
Экономические
Эстетические
надежность
долговечность
экономия материала
повышение производительности труда при изготовлении
снижение трудоемкости и сроков монтажа
совершенствование существующих конструкций
создание новых конструктивных форм
изучение действительной работы конструкций и совершенствование метода расчета
применение сталей повышенной и высокой прочности
применение эффективных профилей
Рис. 1.3. Основные требования к металлическим конструкциям
Физический износ металлических конструкций связан с коррозией и с накоплением других эксплуатационных повреждений. Моральный – с изменением требований и условий эксплуатации (реконструкция производства, модернизация оборудования, изменение санитарных норм и т.п.).
Экономичность определяется затратами на металл и другие материалы, необходимые для изготовления конструкций, стоимостью изготовления, транспортирования и монтажа.
Экономия металла – одно из важнейших требований при проектировании металлических конструкций, так как стоимость металла составляет более половины стоимости конструкций. К тому же сталь является дифицитным материалом, широко применяемым в других областях промышленности.
Экономия металла достигается на основе реализации следующих основных направлений: совершенствование применяемых в строительстве металлоконструкций (практикой наработано большое количество различных видов конструкций); создание и внедрение в строительстве современных эффективных конструктивных форм и систем (пространственные, предварительно напряженные, висячие, структурные и т.п.); совершенствование методов расчета и изыскание оптимальных конструктивных решений с использованием электронно-вычислительной техники.