Файл: 2 Синтетические пищевые продукты (спп) продукты, получаемые из химически синтезированных пищевых веществ.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 11.12.2023

Просмотров: 95

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Замена яйцам. Молодой бизнесмен Джош Тетрик в 2012 году запустил компанию Hampon Creek Foods. Эта компания призвана разработать искусственную замену такому популярному продукту, как птичьи яйца. При участии биохимика Йохана Бута был получен первый результат - желтый порошок из загадочных растений. Продукт Beyond Eggs предлагается добавлять в тесто вместо яиц. На сайте указано, что целевой аудиторией компании являются крупные пищевые производители, которые как раз в массовом количестве и используют яйца или яичный порошок. А предлагаемая субстанция может быть использована при выпечке макарон, маффинов и замешивании майонеза. Правда, пока не вполне ясно, зачем заменять натуральный продукт загадочным порошком. Сам же автор идеи заявляет, что промышленное производство яиц плохо влияет на экологию, да и обращение с курицами гуманным не назовешь. Пока еще неясно, сколько будет стоить яичный порошок, но его создатели обещают сделать его дешевым.

Хлеб долгого хранения. Кто из нас не сталкивался с необходимостью выбрасывать зачерствевший и заплесневевший хлеб? В 2012 году техасская компания Microzap представила новаторские микроволновые печи. По словам создателей такая машина может создать хлеб, который будет на 2 месяца защищен от плесени. Особая технология была разработана учеными Техасского технологического университета. Для того чтобы хлеб дольше жил, его на 10 секунд погружают в сложную микроволновую печь, которая настроена на излучение нужной частоты. Это и убивает споры плесени. Изобретатели уверяют, что их технология поможет не только тем, кто выпекает хлеб. Ведь в таком устройстве можно обрабатывать овощи, фрукты и даже запеченную птицу.

Вино и нанотехнологии. Нанотехнологии пришли уже и в пищевую промышленность. Нидерландская дизайн-студия Next Nature как раз и специализируется на адаптации технологий будущего к пищевой промышленности. Так и появилось новое, динамичное вино. Изменение температуры среды ведет к изменению вкуса, запаха и даже цвета напитка. В состав Nano Wine входят молекулярные соединения с разными свойствами и ароматами, что и активируется именно при нагревании. Если нано-вино не подвергать СВЧ-излучению, то оно похоже на мерло с фруктовыми нотками. А график изменения напитка при нагревании прилагается прямо к вину. На вертикальной оси отложена мощность в ваттах и сила аромата, а на горизонтальной - вкус и время в секундах. Сорт же винограда оказывается разбросанными в поле между осями. Например, для получения терпкого и мягкого каберне надо минуту греть вино в микроволновке при мощности излучения в 900 ватт. Такая памятка будет приложена к каждой бутылке, если все же столько многоликое вино окажется на рынке. Пока же создатели такого продукта просто изучают заинтересованность потенциальных покупателей. А запуск продаж - дело будущего, непонятно только, насколько недалекого.


Съедобная упаковка. Сегодня большая часть еды снабжена упаковкой. И чем больше мы потребляем пищи, тем больше отходов в виде пленки, бумаги, пластика остается. Эта идея призвана решить такую проблему. Профессор Гарварда Дэвид Эдвардс создал особую форму упаковки под названием WikiCell. Она состоит из кальция, перемолотых орехов и некоей липкой субстанции, которая вырабатывается водорослями. Эта смесь идет на приготовление твердой оболочки шарообразной формы. Внутрь нее можно заливать соки, мороженое йогурты или даже супы. А приобрести отдельно такую съедобную упаковку нельзя. Уже к концу 2013 года в продажу поступят сразу два продукта, которые можно будет съедать полностью - йогурт Frozen Yogurt Grapes и мороженое GoYum Ice Cream Grapes.

Печенье из водорослей. В 2003 году компания The Solazyme заявила о себе, как создатель биотоплива на основе водорослей. Но в этом бизнесе у производителя оказалось немало конкурентов. Пришлось компании расширить список создаваемых из водорослей продуктов. Так была получена новая мука. Порошок бледно-желтого цвета может быть использован для изготовления мороженого, шоколада или печенья. Надо отметить, что ничего удивительно в употреблении водорослей в пищу нет. Например, в японской кухне это обычная добавка для многих блюд. Новаторство же американцев состоит в том, что вкус их добавки не замечается в традиционной для европейцев еде. Так можно получать куда более вкусные и менее калорийные блюда. То же мороженое оказывается менее калорийным вдвое. И хотя технология не нашла пока еще широкого применения, авторы идеи надеются найти своего инвестора.

Дневной рацион в одном напитке. Этот напиток пытается вывести на рынок молодой программист из Атланты Роб Ринехарт. Уникальность питательной смеси состоит в том, что в ней заключены все необходимые для жизнедеятельности человека микроэлементы. Автор проекта с помощью сервиса Kickstarter решил собрать деньги на запуск производства уже в 2013 году. Этот сайт позволяет собрать с помощью пожертвований нужную сумму. Очевидно, что Ринехарту удалось собрать необходимые средства, во всяком случае именно об этом сообщает успешный статус проекта на сайте Kickstarter. Журналу Vice автор стартапа поведал, что такой напиток позволит людям сэкономить массу времени. Сам Ринехарт устал уже готовить себе пищу, решив пойти простым путем и создать универсальный продукт. В нем смешались минералы, витамины, полезные микроэлементы, жиры и углеводы. Создатель напитка будущего постарался, чтобы в одном стакане нашлось место для всего, что необходимо организму человека. Ринехарт утверждает, что изобретенным им напитком сам он питался несколько месяцев, а вкус так и не надоел. Продукт напоминает йогурт, только без сладких добавок. Месячный рацион человека обойдется в таком виде всего в 100 долларов. Сейчас автор и главный тестер идеи проходит медицинское исследование. Судя по записям в блоге, продукт действительно действует. Новый товар Ринехарт планирует запустить в продажу на территории США и Канады уже в конце 2013 года, а в Европе чудо-напиток должен появиться уже в марте 2014 года.



Элитная молекулярная кухня. Если большинство изобретателей пищи будущего думают о ее сытности, практичности и цене, то французский шеф-повар Пьер Ганьер руководствуется другими мотивами. Он стремится слегка видоизменить кулинарию в соответствии с собственным видением. Результаты его деятельности говорят об успехах в этом вопросе. В 2008 году шеф-повар вместе с химиком Эрве Тисом, одним из создателей молекулярной кухни, создал новое блюдо, которое целиком состоит из искусственных компонентов. Отличие молекулярной кухни от традиционной заключается в использовании новых технологий. Например, повара используют охлаждение с помощью высоких технологий, смешивают нерастворимые вещества и буквально проводят на кухне химические опыты. Именно так и получаются очень необычные блюда. Обычные макароны могут иметь вкус клубники. Все же стоит отметить, что в химической гастрономии используются чаще обычные продукты, такие, как целые ягоды. Синтетическое блюдо Ганьера представляет собой шарик-желе, слепленный из лимонной и аскорбиновой кислоты, с добавками глюкозы, малтинола. Вкус у такого блюда получился яблочно-лимонный. Интерес к такого рода продуктам именитый повар сумел привить своим ученикам в кулинарной школе Le Cordon Bleu. Вместе с последователями в 2011 году Ганьер сумел представить обед Note a Note, который вообще полностью состоял из синтетической пищи.

11111111111111111111111

Продукты оргсинтеза

СИНТЕТИЧЕСКАЯ ПИЩА

Еще в 1965 году был проведен эксперимент: 25 человек на протяжении недели питались полужидким синтетическим раствором — аминокислоты, водо- и жирорастворимые витамины, соли, углеводы, жиры. Все выжили, но 10 человек сошли с дистанции: выяснилось, что есть такое можно, но очень уж противно.

Человек давно освоил технологию выделения чистого белка из сои, хлопка, рапса, подсолнечника, арахиса, риса, кукурузы, гороха, пшеницы, зеленых листьев, картофеля, конопли и многих других растений. Однако это неполноценные растительные белки, не содержащие некоторые незаменимые аминокислоты. А в питании человеку необходим в достаточном количестве и полноценный животный белок. Но где его взять?

И человек научился с помощью дрожжей, бактерий, одноклеточных водорослей и микроорганизмов превращать углеводы, спирты, парафины, траву и даже нефть в дешевый полноценный пищевой белок, содержащий все незаменимые аминокислоты. Переработка всего 2% ежегодной мировой добычи нефти позволяет произвести до 25 млн тонн белка — количество, достаточное для питания 2 млрд человек в течение года.


И этот метод переработки доступного дешевого сырья в дефицитный животный белок с использованием микроорганизмов называют микробиологическим синтезом. Технология производства микробной биомассы как источника ценных пищевых белков была разработана еще в начале 1960-х годов. Тогда ряд европейских компаний обратили внимание на возможность выращивания микробов на таком субстрате, как углеводороды нефти, для получения т.н. белка одноклеточных организмов (БОО). Технологическим триумфом было получение продукта, состоящего из высушенной микробной биомассы, выросшей на метаноле. Процесс шел в непрерывном режиме в ферментере с рабочим объемом 1,5 млн литров.

Однако в связи с ростом цен на нефть и продукты ее переработки этот проект стал экономически невыгодным, временно уступив место производству соевой и рыбной муки. К концу 1980-х годов заводы по получению БОО были демонтированы, что положило конец бурному, но короткому периоду развития этой отрасли микробиологической промышленности.

Биомасса из отходов

Более перспективным оказался другой процесс — получение грибной биомассы и полноценного грибного белка микопротеина с использованием в качестве субстрата смеси парафинов нефти (очень дешевых отходов нефтеперерабатывающей промышленности), растительных углеводов из пищевых отбросов, минеральных удобрений и отходов птицеводства.

Задача промышленных микробиологов состояла в создании мутантных форм микроорганизмов, резко превосходящих своих природных собратьев, т.е.

получение сверхпродуцентов полноценного белка из сырья. В этой области достигнуты большие успехи: например, удалось получить микроорганизмы, которые синтезируют белки вплоть до концентрации 100 г/л (для сравнения: организмы дикого типа накапливают белки в количествах, исчисляемых миллиграммами). В качестве продуцентов микробного белка исследователи выбрали два вида всепожирающих микроорганизмов, способных питаться даже парафинами нефти: мицелиальный гриб Endomycopsis fibuligera и дрожжеподобный грибок Candida tropicalis (один из возбудителей кандидозов и кишечных дисбактериозов у людей). Каждый из этих продуцентов образует около 40% полноценного белка.

Ученые подобрали и условия предварительной обработки отходов, добавляемых к парафинам нефти для оптимального роста грибковой микрофлоры. Куриный помет разбавляют и гидролизуют в кислых условиях, пивную дробину тоже гидролизуют серной кислотой. После такой обработки никакие посторонние микроорганизмы, бывшие в отходах, не выживают и не мешают расти посеянным на субстрат микроскопическим грибам.


Технологи подобрали и условия фильтрации размножившейся биомассы микроорганизмов из питательной среды. Все проведенные испытания показали, что получаемый продукт не токсичен, а значит, из смеси парафинов нефти, куриного помета и растительного углеводного сырья можно получать полноценный микробный белок. Таким образом, одновременно найден путь эффективной утилизации помета, что составляет одну из основных проблем развития промышленного птицеводства. Получился искусственный «круговорот пищевых веществ в природе» — что из желудка вышло, в него же и вернется.

Следующая задача заключалась в том, что белки, выделяемые из выросших на субстрате грибков и поставляемые на пищекомбинаты под названием «биомасса», очищены и дезодорированы, т.е. не имеют вкуса и запаха, бесцветны и представляют собой порошок, пасту или вязкий раствор.

Конструирование пищи

Едва ли найдутся желающие употреблять их в таком виде в пищу, несмотря на все достоинства по показателям пищевой и биологической ценности. Поэтому на первом этапе выделенные безвкусные белки пытались просто добавлять к традиционным мясным, и не только мясным, продуктам для обогащения их аминокислотного состава.

Но такой путь не позволил кардинально решить белковую проблему. И ученые решили создать, сконструировать искусственные продукты питания, внешне не отличающиеся от привычных для нас традиционных продуктов, на базе использования имеющихся ресурсов белка. Такой подход позволил регулировать состав, свойства и степень усвояемости получаемых аналогов пищевых продуктов, что имеет особое значение при организации детского, лечебного и профилактического питания А использование специальной технологии и оборудования дает возможность воссоздать структуру, внешний вид, вкус, запах, цвет и все остальные свойства, имитирующие привычный продукт. Короче говоря, конструирование пищи заключается в выделении белка из сырья различной природы и превращении его машинным способом в аналог пищевого продукта с заданным составом и свойствами.

В конце существования СССР (в 1989 году) годовое производство искусственных белковых субстанций превысило 1 млн тонн. В условиях современной России высокая прибыльность таких производств позволила резко увеличить выпуск белковых суррогатов и ныне заменить практически все мясо в промышленных изделиях из фарша. Изготовляют искусственные мясопродукты несколькими путями, позволяющими получить изделия, имитирующие мясо, рубленые котлеты, бифштексы, кусковые полуфабрикаты, колбасные изделия, сосиски, ветчину и многое другое. Конечно, создать неотличимую имитацию куска мяса невозможно — слишком сложна его структура. Другое дело фарш и изделия из него — колбасы, сосиски, сардельки и т.п. Техника и технология получения мясных аналогов различна в зависимости от вида изделий. Мы же расскажем только о некоторых, наиболее интересных. В соответствии с одним из способов раствор выделенного белка подают под высоким давлением через фильеру в ванну со специальным кислотно-солевым раствором, где белок коагулирует, отвердевает, упрочняется и подвергается ориентационной вытяжке, в результате чего получают белковую нить.