ВУЗ: Карагандинский государственный медицинский университет
Категория: Шпаргалка
Дисциплина: Биология
Добавлен: 06.02.2019
Просмотров: 399
Скачиваний: 12
M @d!k-S@d!k – «учитесь пониманию, а не зубрежке»…Удачи вам!
8.1. Механизм действия на примере инсулинаПодобно другим гормонам своё действие инсулин осуществляет через белок-рецептор. Инсулиновый рецептор представляет собой сложный интегральный белок клеточной мембраны, построенный из 2 субъединиц (a и b), причём каждая из них образована двумя полипептидными цепочками. Инсулин с высокой специфичностью связывается и распознаётся а-субъединицей рецептора, которая при присоединении гормона изменяет свою конформацию. Это приводит к появлениютирозинкиназной активности у субъединицы b, что запускает разветвлённую цепь реакций по активации ферментов, которая начинается с аутофосфорилирования рецептора. Весь комплекс биохимических последствий взаимодействия инсулина и рецептора ещё до конца не вполне ясен, однако известно, что на промежуточном этапе происходит образованиевторичных посредников: диацилглицеролов и инозитолтрифосфата, одним из эффектов которых является активация фермента — протеинкиназы С, с фосфорилирующим (и активирующим) действием которой на ферменты и связаны изменения во внутриклеточном обмене веществ. Усиление поступления глюкозы в клетку связано с активирующим действием посредников инсулина на включение в клеточную мембрану цитоплазматических везикул, содержащих белок-переносчик глюкозы GLUT 4. 2.Цитоплазма компоненты. а) Гиалоплазма – это матрикс цитоплазмы (Основное вещество цитоплазмы), представляет собой концентрированный раствор неорганических и органических соединений, главными компонентами которого являются белки. Это коллоидная система, которая может переходить из жидкого в гелеобразное состояние и обратно в котором находятся её структуры. в) Некоторые макромолекулы могут объединяться (путём самосборки) в те или иные комплексы и структуры. б) В гиалоплазме располагаются органоиды микроструктуры цитоплазмы, выполняющие в клетке различные жизненно важные функции. Органоиды могут быть мембранными отграничены собственной мембраной от окружающей гиалоплазмы, т.е. представляют собой закрытые компартменты. (ядро, аппарат Гольджи, эндоплазматический ретикулум, лизосомы, митохондрии, хлоропласты) и немембранными структуры, не окружённые мембраной. (клеточный центр, рибосомы, цитоскелет). 3. Включения продукты клеточной деятельности, вакуоли, а также мельчайшие трубочки и нити, образующие скелет клетки. а) Включения - необязательные компоненты цитоплазмы; они возникают и исчезают в зависимости от состояния клетки. б) Различают 4 типа включений. I. Трофические (капельки жиров, гранулы полисахарид)- резервные запасы питательных веществ. II – III. Секреторные (биологически активные вещества) и экскреторные (ненужные продукты обмена. включения) - обычно это мембранные пузырьки, содержащие вещества, подлежащие выведению из клетки; IV. Пигментные включения – экзогенные (красители, провитамин А и тд), эндогенные (меланин, гемосидерин (комплекс белка с железом) и др.) В цитоплазме протекают основные процессы обмена веществ, она объединяет в одно целое ядро и все органоиды, обеспечивает их взаимодействие, деятельность клетки как единой целостной живой системы. |
7.1 Фолдинг белков. Фолдинг- сворачивание пептидной цепи в нправильную трехмерную структуру. Белки фолдинга можно разделить на 2 группы: 1 Фолдазы- белки с каталитической активностью т.е ферменты. 2 Шапероны – вспомогательные белки с различными механизмами действия. Они предупреждают неправильные взаимодействия в пептидной цепи, контролируют рефолдинг, учавствуют в некоторых видах внутриклеточного транспорта белков. (в лизосомы и митохондрии). НСР60 – Сворачивает, 100 – разворачивает белковые глобулы. 2. Митохондрии, лизосомы, комплекс Гольджи, их строение и функции Митохондрии – это энергетические органоиды. Форма митохондрий различна, они могут быть остальными, палочковидными, нитевидными со средним диаметром 1 мкм. и длиной 7 мкм. Число митохондрий зависит от функциональной активности клетки и может достигать десятки тысяч в летательных мышцах насекомых. Митохондрии снаружи ограничены внешней мембраной, под ней – внутренняя мембрана, образующая многочисленные выросты – кристы.Внутри митохондрий находятся РНК, ДНК и рибосомы. В ее мембраны встроены специфические ферменты, с помощью которых в митохондрии происходит преобразование энергии пищевых веществ в энергию АТФ, необходимую для жизнедеятельности клетки и организма в целомМембрана, матрикс, выросты – кристы. Функции: синтез молекулы АТФ, синтез собственных белков, нуклеиновых кислот, углеводов, липидов, образование собственных рибосом. Аппарат Гольджи – пластинчатый комплекс, представляет собой стопку из 5-20 уплощённых дисковидных мембранных полостей и отшнуривающихся от них микропузырьков – лизосом. Структурная единица аГ – диктиосома. Ф-ции: участие в экзоцитозе,транспорт в-тв, образует лизосомы, содержащие ферменты. Сортировка, хим.модификация биомолекул. Перечень функций комплекса Гольджи сегрегация (отделение) соответствующих белков от гиалоплазмы и концентрирование их,продолжение химической модификации этих белков,сортировка данных белков на лизосомальные, мембранные и экспортные,включение белков в состав соответствующих структур (лизосом, секреторных пузырьков, мембран). Лизосомы – это мембранные органоиды. Имеют овальную форму и диаметр 0,5 мкм. В них находится набор ферментов, которые разрушают органические вещества. Мембрана лизосом очень прочная и препятствует проникновению собственных ферментов в цитоплазму клетки, но если лизосома повреждается от каких-либо внешних воздействий, то разрушается вся клетка или часть ее. Лизосомы встречаются во всех клетках растений, животных и грибов. Строение: пузырьки овальной формы, снаружи мембрана, внутри ферменты. Функции: расщепление органических веществ, разрушение отмерших органоидов, уничтожение отработавших клеток. лизосомы - это мембранные пузырьки, содержащие ферменты гидролиза биополимеров, образуются, отпочковываясь от цистерн комплекса Гольджи. Функция лизосом 1-переваривание захваченных клеткой при эндоцитозе вещеста или частиц 2-аутофагия – уничтожение ненужн клетке структур во время замены старых органоидов новыми или переваривании белков и др. веществ, производящихся внутри самой клетки 3-автолиз-самопереваривание клетки, приводящее к ее гибели Примером может служить утрата хвоста при превращении головастика в лягушку |
6.1. Строение и функции эндоплазматического ретикулума. ЭПС – система соединённых м/у собой трубочек, канальцев и полостей, отграниченных от цитоплазмы одним слоем мембраны иразделяющих цитоплазму клеток на изолированные пространства. Это неободимо, чтобы определить множество параллельно идущих реакций. ЭПС связывает м/у собой основные органоиды клетки. Участвует в экзоцитозе. Шероховатая – на её пов-ти образованы рибосомы, которые синтезируют белок, а также упаковка, транспорт и хранение белков. Гладкая – осуществляет синтез липидов, стероидов и углеводов, дапонирование ионов Са. 2.Функции мРНК и т-РНК. Т-рнк –самая маленькая, в состав входит 75-90 нуклеотидов, 10-20% от массовой доли рнк. Ф-ция: перенос активированных (а/к+атф) а/к к рибосомам. 3 петли: 1-дигидроуридиновая. 8-12 нуклеотидов. 2 – псевдоуридиновая. 7 нуклеотидов. Обеспечивает взаимодействие с рибосомой. 3 – антикодоновая. 20нуклеотидов. Входит триплет нуклеотидов, обеспечивающий «узнавание места» а/к-ы в строящейся белковой молекуле. Для каждой а/к свои кодоны. И-рнк образуется в ходе транскрипции на молекуле ДНК. 2-6% массовой доли всех рнк. Входит 6 участков: 1) кэп: стабилизация молекулы и-рнк. 2) предцистронный: связывание с рибосомой за счёт образования водородной связи. 3) инициирующий : содержит «команду» о начале биосинтеза белка в рибосоме. 4) цистронный: несёт инф.о биосинтезе белка. 5) обрывающийся триплет: команда о прекращении биосинтеза. 6) постцистронный: регулирует к-во синтезируемого белка |
.
2.1. Основные функции биомембран барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
транспортная —
через мембрану происходит транспорт
веществ в клетку и из клетки. Транспорт
через мембраны обеспечивает: доставку
питательных веществ, удаление конечных
продуктов обмена, секрецию различных
веществ, создание ионных градиентов,
поддержание в клетке оптимального pH и
концентрации ионов, которые нужны
для работы клеточных ферментов. матричная — обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие. механическая — обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных — межклеточное вещество. энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;
рецепторная —
некоторые белки, находящиеся в
мембране, являются рецепторами (молекулами,
при помощи которых клетка воспринимает
те или иные сигналы). ферментативная — мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
осуществление
генерации и проведения биопотенциалов. маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены. 2.СТРОЕНИЕ И КЛАССИФИКАЦИЯ А/К Аминокислоты — это органические бифункциональные соединения, в состав которых входят карбоксильная группа —СООН и аминогруппа —NH2. В зависимости от взаимного расположения обеих функциональных групп различают ά-,β -, γ –аминокислоты А/К делятся на 2 гр: Заменимые-при отсутствии этих а/к они м.б. заменены др.а/к близкой по строению. Незаменимые они сентезируются только в автотрофных организмах (трптофан, метионин,лизин.) З: аланин, аспарагин, аспартат, глицин, глутамин, глутамат, пролин, серин, гидроксилизин, гидроксипролин. Н.З.:Валин, изолейцин,лейцин, лизин, метионин, тирозин,треонин, трептофан, фенилаланин, цистеин. П.З: аргинин,гистидин |