Файл: 1. 3 Разложение сигналов в обобщенный ряд Фурье. Тесты по теме 1 Модели непрерывных каналов связи. Автор Санников Владимир Григорьевич правильные ответы отмечены знаком неправильные ответы отмечены знаком #.pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 12.12.2023
Просмотров: 312
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
10.2.2. При эффективном кодировании менее вероятные сообщения представляются ____ кодовыми словами
* более длинными # более короткими # равноправными # произвольными
10.2.3. Избыточность кодовой последовательности оптимального эффективного кода
* 0; # < 0; # > 0; # < 1;
10.2.4. Способы увеличения энтропии
* укрупнение сообщений формирование префиксного кода увеличение m;
* предсказание ; формирование префиксного кода увеличение m;
# укрупнение сообщений предсказание увеличение n;
# предсказание ; формирование префиксного кода увеличение n;
10.2.5. Источник выдает 4 сообщения с вероятностями р(А1)=0.14 , р(А2)=0.21 , р(А3)=0.09 , р(А4)=0.56. Кодовые комбинации префиксного кода равны
* 1,00,011,010; # 0,00,011,010; #1,00,011,110; # 1,00,111,010;
10.2.6. Источник выдает 4 сообщения с вероятностями р(А1)=0.15 , р(А2)=0.23 , р(А3)=0.1 , р(А4)=0.52. Кодовые комбинации префиксного кода равны
* 1,00,011,010; # 0,00,011,010; #1,00,011,110; # 1,00,111,010;
10.2.7. Источник выдает 4 сообщения с вероятностями р(А1)=0.12 , р(А2)=0.26 , р(А3)=0.1 , р(А4)=0.52. Кодовые комбинации префиксного кода равны
* 1,01,001,000; # 0,00,011,010; #1,00,011,110; # 1,00,111,010;
10.2.8. С уменьшением корреляции между сообщениями избыточность источника
* уменьшается # увеличивается # не меняется # растет
10.2.9. Источник выдает 4 сообщения с вероятностями р(А1)=0.13 , р(А2)=0.22 , р(А3)=0.1 , р(А4)=0.55. Кодовые комбинации префиксного кода равны
* 1,00,011,010; # 0,00,011,010; #1,00,011,110; # 1,00,111,010;
10.2.10. Источник выдает 4 сообщения с вероятностями р(А1)=0.13 , р(А2)=0.26 , р(А3)=0.1 , р(А4)=0.51. Кодовые комбинации префиксного кода равны
* 1,01,001,000; # 0,00,011,010; #1,00,011,110; # 1,00,111,010;
10.2.11. Источник выдает 4 сообщения с вероятностями р(А1)=0.14 , р(А2)=0.21 , р(А3)=0.09 , р(А4)=0.56. Соответствующие вероятностям комбинации префиксного кода равны 1,00,011,010. Средняя длина комбинации равна
* 1.67; # 1.58; # 2.1; # 1.87;
10.2.12. Источник выдает 4 сообщения с вероятностями р(А1)=0.14 , р(А2)=0.21 , р(А3)=0.09 , р(А4)=0.56. Соответствующие вероятностям комбинации префиксного кода равны 1,00,011,010. Вероятность появления 1 и 0 :
* 0.557; 0.443; # 0.55; 0.45; # 0.511; 0.489; # 0.254; 0.746;
10.2.13. Источник выдает 4 сообщения с вероятностями р(А1)=0.15 , р(А2)=0.23 , р(А3)=0.1 , р(А4)=0.52. Соответствующие вероятностям комбинации префиксного кода равны 1,00,011,010. Средняя длина комбинации равна
* 1.73; # 1.67; # 2.01 # 1.55;
10.2.14. Источник выдает 4 сообщения с вероятностями р(А1)=0.15 , р(А2)=0.23 , р(А3)=0.1 , р(А4)=0.52. Соответствующие вероятностям комбинации префиксного кода равны 1,00,011,010. Вероятность появления 1 и 0 :
* 0.532; 0.468; # 0.550; 0.450; # 0.511; 0.489; # 0.254; 0.746;
10.2.15. Источник выдает 4 сообщения с вероятностями р(А1)=0.12 , р(А2)=0.26 , р(А3)=0.1 , р(А4)=0.52. Соответствующие вероятностям комбинации префиксного кода равны 1,01,001,000. Средняя длина комбинации равна
* 1.7; # 1.67; # 1.73 # 1.55;
10.2.16. Источник выдает 4 сообщения с вероятностями р(А1)=0.12 , р(А2)=0.26 , р(А3)=0.1 , р(А4)=0.52.
Соответствующие вероятностям комбинации префиксного кода равны 1,01,001,000. Вероятность появления 1 и 0 :
* 0.529; 0.471; # 0.532; 0.468; # 0.511; 0.489; #0.550; 0.450;
10.2.17. Источник выдает 4 сообщения с вероятностями р(А1)=0.13 , р(А2)=0.22 , р(А3)=0.1 , р(А4)=0.55. Соответствующие вероятностям комбинации префиксного кода равны 1,00,011,010; Средняя длина комбинации равна
* 1.68; # 1.67; # 1.73 # 1.7;
10.2.18. Источник выдает 4 сообщения с вероятностями р(А1)=0.13 , р(А2)=0.22 , р(А3)=0.1 , р(А4)=0.55. Соответствующие вероятностям комбинации префиксного кода равны 1, 00, 011, 010; Вероятность появления 1 и 0 :
* 0.542; 0.458; # 0.529; 0.471; # 0.511; 0.489; #0.550; 0.450;
10.2.19. У дешифруемых префиксных кодов ни одно кодовое слово не является ____ для другого кодового слова
* началом # частью # основанием # концом
10.2.20. Три основных метода увеличения энтропии в кодере источника
* укрупнение алфавита * равновероятное распределение символов * увеличение основания кода.
10.3.1. Пропускная способность канала с шумом - это максимальная скорость передачи информации при ______________ вероятности ошибки.
* сколь угодно малой
# сколь угодно большой
# средней
# нулевой
10.3.2. При кодировании в канале с шумом для уменьшения ошибок декодирования расстояние между кодовыми словами следует
* увеличить # уменьшить # зафиксировать # выбрать случайно.
10.3.3. Пропускная способность канала с шумом - это
* максимальная скорость передачи информации
# минимальная скорость передачи информации
# средняя скорость передачи информации
# максимальная энтропия источника
10.3.4. Взаимная информация определяется через ____________ безусловной и условной энтропий.
* разность # сумму # произведение # деление.
10.3.5. Повышение помехоустойчивости кодирования в канале с шумом достигается введением дополнительной ________ .
* избыточности # неопределенности # равнозначности # производительности.
10.3.6. Заданы производительность Н
*
=Н/Т источника и пропускная способность С канала. При НС существует такой код, для которого сообщения источника могут быть переданы по каналу с ________ вероятностью ошибок.
* произвольно малой # нулевой # сколь угодно большой
10.3.7. По каналу связи с полосой пропускания F и отношением Р
с
/ Р
ш можно передавать информацию при р ош
→0 со скоростью сколь угодно близкой к :
* С+ Р
с
/ Р
ш
); # С Р
с
/ Р
ш
); # С+ Р
с
/ Р
ш
);; # С+ Р
с
/ Р
ш
);.
10.3.8. . Пропускная способность канала связи с полосой пропускания F=1 кГц и отношением Р
с
/ Р
ш
=7 равна
* 3000 бит/с; # 1000 бит/с ; # 8000 бит/с ; # 7000 бит/с ;
10.3.9. Пропускная способность канала связи с полосой пропускания F=1 кГц и отношением Р
с
/ Р
ш
=15 равна
* 4000 бит/с; # 1000 бит/с ; # 15000 бит/с ; # 16000 бит/с ;
10.3.10. Пропускная способность канала связи с полосой пропускания F=2 кГц и отношением Р
с
/ Р
ш
=3 равна
* 4000 бит/с; # 1000 бит/с ; # 2000 бит/с ; # 6000 бит/с ;
10.3.11. Пропускная способность канала связи с полосой пропускания F=2 кГц и отношением Р
с
/ Р
ш
=31 равна
* 10000 бит/с; # 31000 бит/с ; # 32000 бит/с ; # 62000 бит/с ;
10.3.12. Пропускная способность канала связи с полосой пропускания F=3 кГц и отношением Р
с
/ Р
ш
=7 равна
* 9000 бит/с; # 3000 бит/с ; # 21000 бит/с ; # 24000 бит/с ;
10.3.13. Количество взаимной информации, передаваемой по каналу связи равно нулю, если сигналы на входе и выходе канала связи _______ .
* независимы # неоднозначны # неинформативны; # зависимы
10.3.14. Фамилия ученого, который впервые ввел меру взаимной информации и сформулировал основную теорему для каналов с шумами
* Шеннон; # Котельников; # Винер; # Хинчин;
10.3.15. Заданы производительность Н
*
=Н/Т источника и пропускная способность С канала. При НС существует такой код, для которого сообщения источника могут быть переданы по каналу с ________ вероятностью ошибок.
* произвольно малой # нулевой # сколь угодно большой
11.1.1. Помехоустойчивое кодирование используется для того, чтобы
* повысить помехоустойчивость системы связи
* исправлять ошибки
# уменьшить помехоустойчивость системы связи
# увеличить вероятность ошибки
11.1.2. Запрещенные кодовые комбинации – это комбинации
* неиспользуемые для передачи информации
# используемые для передачи информации
# содержащие одни 0;
# содержащие одни 1;
11.1.3. Разрешенные кодовые комбинации – это комбинации
* используемые для передачи информации
# неиспользуемые для передачи информации
# содержащие одни 0;
# содержащие одни 1;
11.1.4. Кодовое расстояние - это количество позиций, в которых
* одна кодовая комбинация отличается от другой
# совпадают кодовые комбинации
# содержится 1;
# содержится 0;
11.1.5. Основание кода - это :
* количество различных символов, образующих кодовые комбинации # количество единиц в комбинации ;
# количество нулей в комбинации
# количество символов в комбинации
11.1.6. Длина кодовой комбинации – это :
* общее количество символов в кодовой комбинации ;
# количество единиц в комбинации ;
# количество нулей в комбинации
# количество различных символов, образующих кодовые комбинации
11.1.7. Общее количество комбинаций при основании кода m и длине комбинации n равно
* m n
; # mn ;
# n m
; # m/n ;
11.1.8. Код содержит комбинации вида 000, 101, 111, 001, и т.д. Основание кода и длина кодовой комбинации равны, соответственно
* 2, 3; # 3,2 ; # 3,3; # 2,2;
11.1.9. Основание кода и длина кодовой комбинации равны 2. Комбинации кода ( в порядке возрастания десятичного эквивалента двоичных чисел
* 00; 01; 10; 11; # 00; 10; 01;11; # 00; 01; 11; 10; # 01; 00;10; 11;
11.1.10. Соответствие основания кода и длины комбинации (справа) кодовым комбинациям (слева
* -10, 01, 11, -1-1, …..; * 3, 2;
* 001, 110, 010, 111, …..; * 2,3;
* 1, 0, -1, -2 ; *4, 1;
# 1,4;
# 2,2;
11.1.11. Код содержит комбинации вида 000, -101, -1-11, 001, 0-10 и т.д. Основание кода и длина кодовой комбинации равны, соответственно
* 3, 3; # 3,2; # 2, 3; # 2,2;
11.1.12. Код содержит комбинации вида 0000, 0101, 1111, 0001, и т.д. Общее число комбинаций равно
*16 ; # 8; # 9; # 12;
11.1.13. Код содержит комбинации вида 000, 101, 111, 001, и т.д. Общее число комбинаций равно
* 8; # 9; # 4; # 16;
11.1.14. Соответствие общего числа комбинаций кода (справа) основанию кода и длине кодовой комбинации (слева
* 2, 2; * 4;
* 3, 4; * 81;
* 4, 2; * 16;
* 2, 5; *32;
# 64 ;
# 25 ;
11.1.15. Кодовое расстояние между кодовыми комбинациями 101 и 011 равно
* 2; # 4; # 3; # 1;
11.1.16. Кодовое расстояние между кодовыми комбинациями 1101 и 0110 равно :
* 3; # 4; # 2; # 1;
11.1.17. Соответствие кодового расстояния (справа) кодовым комбинациям (слева
* 0011 и 0101; * 2;
* 100101 и 010100; * 3;
* 0011 и 1100; * 4;
* 001001 и 001001; * 0;
# 1;
# 5;
11.1.18. Определяется кодовое расстояние между комбинацией 101010 и кодовыми комбинациями 000000, 111111, 010101 , 000111. Порядок следования кодовых расстояний
* 3; * 3; * 6; * 4;
11.1.19. Разрешенные кодовые комбинации 000, 011, 101, 110. Минимальное кодовое расстояние этого кода равно
* 2; # 3; # 0; # 1;
11.1.20. Разрешенные кодовые комбинации 111, 011, 101, 000. Минимальное кодовое расстояние этого кода равно
* 1; # 3; # 2; # 0;
11.2.1. Для блочного двоичного кода (5,3) количество информационных символов равно
* 3 ; # 2; # 5; # 8;
11.2.2. Для блочного двоичного кода (5,3) количество проверочных символов равно
* 2 ; # 3; # 5; # 8;
11.2.3. Передаются последовательно десятичные числа от 0 до 7. Порядок следования двоичных эквивалентов этих чисел
* 000 ; * 001 ; * 010 ; * 011 ; *100 ; * 101 ; * 110 ; * 111 ;
11.2.4. Проверочные символы корректирующего кода (5,3) образуются по правилу а
4
=а
1
⊕а
2
; а
5
=а
1
⊕а
2
⊕а
3
. Информационная кодовая комбинация 111. Символы аи а
5
равны, соответственно
* 0, 1 ; # 1, 0; # 1, 1; # 0, 0;
11.2.5. Проверочные символы корректирующего кода (5,3) образуются по правилу а
4
=а
1
⊕а
3
; а
5
=а
1
⊕а
2
. Информационная кодовая комбинация 101. Символы аи а равны, соответственно
* 0 ; 1 ; # 1, 0; # 1, 1; # 0, 0;
11.2.6. Проверочные символы корректирующего кода (5,3) образуются по правилу а
4
=а
1
⊕а
2
; а
5
=а
1
⊕а
2
⊕а
3
. Соответствие проверочных символов (справа) информационной комбинации (слева
* 000 ; * 00;
* 010 ; * 11;
* 101 ; * 10;
# 01;
11.2.7. Проверочные символы корректирующего кода (5,3) образуются по правилу а
4
=а
1
⊕а
3
; а
5
=а
1
⊕а
2
⊕а
3
. Разрешенными кодовыми комбинациями этого кода являются комбинации
* 00000 ; * 11010 ; * 01110 ; # 01011 ; # 01111;
11.2.8. Проверочный символ корректирующего кода (3,2) образуются по правилу а
3
=а
1
⊕а
2
. Разрешенные кодовые комбинации этого кода
* 000 ; * 011; * 101; # 001; # 111;
11.2.9. Блочный двоичный код (7,4) имеет минимальное кодовое расстояние равное 3. Этот код
* исправляет все одиночные ошибки
# исправляет все двойные ошибки
# обнаруживает одиночные ошибки
# исправляет три ошибки
11.2.10. Блочный двоичный код (5,3) имеет минимальное кодовое расстояние равное 2. Этот код
* обнаруживает одиночные ошибки
# исправляет двойные ошибки
# исправляет одиночные ошибки
# исправляет две ошибки
11.2.11. Синдром - это :
* указатель позиции, в которой произошла ошибка
# проверочные символы ;
# информационные символы
# неверно принятые символы
11.2.12. Синдром кода : не зависит от переданной комбинации зависит от переданной комбинации не зависит от позиции в которой произошла ошибка
# зависит от номера переданной комбинации
11.2.13. Синдром кода (7,3) образуется по правилу с
1
=а
1 а
⊕а
3
⊕а
4
, с
2
=а
2
⊕а
3
⊕а
5
, с
3
=а
1
⊕а
3
⊕а
6
, с
4
=а
1
⊕а
2
⊕а
7
. Принята комбинация 1111001. Синдром равен
* 0001 ; # 1000; # 1001; # 1100; # 1010;
11.2.14. Синдром кода (7,3) образуется по правилу с
1
=а
1 а
⊕а
3
⊕а
4
, с
2
=а
2
⊕а
3
⊕а
5
, с
3
=а
1
⊕а
3
⊕а
6
, с а
⊕а
2
⊕а
7
. Принята комбинация 1111010. Синдром равен
* 0010 ; # 1000; # 1001; # 1100; # 1010;
11.2.15. Синдром кода (7,3) образуется по правилу с
1
=а
1 а
⊕а
3
⊕а
4
, с
2
=а
2
⊕а
3
⊕а
5
, с
3
=а
1
⊕а
3
⊕а
6
, с
4
=а
1
⊕а
2
⊕а
7
. Принята комбинация 1000000. Синдром равен
* 1011 ; # 1000; # 1001; # 1100; # 1010;
11.2.16. Синдром кода (7,3) образуется по правилу с
1
=а
1 а
⊕а
3
⊕а
4
, с
2
=а
2
⊕а
3
⊕а
5
, с
3
=а
1
⊕а
3
⊕а
6
, с
4
=а
1
⊕а
2
⊕а
7
. Принята комбинация 0100000. Синдром равен
* 1101 ; # 1000; # 1001; # 1100; # 1010;
11.2.17. Синдром кода (7,3) образуется по правилу с
1
=а
1 а
⊕а
3
⊕а
4
, с а
⊕а
3
⊕а
5
, с а
⊕а
3
⊕а
6
, с а
⊕а
2
⊕а
7
. Принята комбинация 1111000. Синдром равен
* 0000 ; # 1000; # 0001; # 0100; # 1010;
11.2.18. Синдром кода (7,3) образуется по правилу с
1
=а
1 а
⊕а
3
⊕а
4
, с а
⊕а
3
⊕а
5
, с а
⊕а
3
⊕а
6
, с а
⊕а
2
⊕а
7
. Принята комбинация 1111010. Была передана комбинация
* 1111000 ; # 1111010 ; # 1110010 ; # 1101010 ;
11.2.19. Синдром кода (7,3) образуется по правилу с
1
=а
1 а
⊕а
3
⊕а
4
, с а
⊕а
3
⊕а
5
, с а
⊕а
3
⊕а
6
, с а
⊕а
2
⊕а
7
. Принята комбинация 0000100. Была передана комбинация
* 0000000 ; # 0000100 ; # 0000010 ; # 0000001 ;
11.2.20. Синдром кода (7,3) образуется по правилу с
1
=а
1 а
⊕а
3
⊕а
4
, с а
⊕а
3
⊕а
5
, с а
⊕а
3
⊕а
6
, с а
⊕а
2
⊕а
7
Принята комбинация 0000010. Была передана комбинация
* 0000000 ; # 0000010 ; # 0000001 ; # 1000000 ;
11.3.1. Кодовые комбинации циклического кода образуются путем :
* циклической перестановки символов
# случайной перестановки символов
# добавления символов
# отбрасывания символов
11.3.2. Одна из комбинаций циклического кода 1001. Остальные комбинации этого кода
* 0011, 0110, 1100; # 0111, 0110, 1100; # 0011, 0110, 1101; # 0011, 0101, 1100;
11.3.3. Полином, соответствующий двоичной кодовой комбинации 101, имеет вид
* z
2
+1; # z+1; # z
2
+z+1; # 1;
11.3.4. Полином, соответствующий двоичной кодовой комбинации 0011, имеет вид
* z+1; # z
2
+1; # z
2
+z+1; # 1;
11.3.5. Комбинации кода передаются в следующем порядке 011, 101, 110. Порядок следования полиномов, соответствующих этим двоичным кодовым комбинациям
* z+1; * z
2
+1 ; * z
2
+z;
11.3.6. Соответствие полинома двоичной кодовой комбинации
* 1001 ; * z
3
+1;
*0001; * 1 ;
*1110; * z
3
+z
2
+ z;
* 0101 ; * z
2
+1;
# z
3
;
# z +1;
11.3.7. Двоичная кодовая комбинация, соответствующая полиному z
2
+1:
* 101; # 110; # 000; # 001;
11.3.8. Двоичная кодовая комбинация, соответствующая полиному z
3
+z+1:
* 1011; # 1100; # 0011; # 1001; # 1101;
11.3.9. Соответствие двоичной кодовой комбинации полиному
* z
3
+1; * 1001 ;
* 1 ; *0001;
* z
3
+z
2
+ 1; *1101;
* z
2
+z; * 0110 ;
# z
3
;
# z +1;
11.3.10. Полиномы, соответствующие двоичным кодовым комбинациям, передаются в следующем порядке z
2
+z+1; z +1 ; z
2
+z; 1.
Порядок следования двоичных кодовых комбинаций, соответствующих этим полиномам
*111; *011; * 110, * 001;
11.3.11. Информационная комбинация циклического кода 1001. Образующий полином
(z
3
+z
2
+1). Комбинация циклического кода (7,4), формируемая путем перемножения , равна
* 1100101; # 1001001; # 1101000; # 1001111;
11.3.12. Информационная комбинация циклического кода 1100. Образующий полином
(z
3
+z
2
+1). Комбинация циклического кода (7,4), формируемая путем перемножения , равна
* 1011100; # 1011001; # 1011111; # 1101100;
11.3.13. Информационная комбинация циклического кода 1010. Образующий полином
(z
3
+z
2
+1). Комбинация циклического кода (7,4), формируемая путем перемножения , равна
* 1110010; # 1110110; # 1010010; # 0110010;
11.3.14. Принята комбинация 1110011 циклического кода (7,4). Образующий полином
(z
3
+z
2
+1). Синдром принятой комбинация циклического кода равен
* 001; # 111; # 010; # 100;
11.3.15. Принята комбинация 1001010 циклического кода (7,4). Образующий полином
(z
3
+z
2
+1). Синдром принятой комбинация циклического кода равен :
* 001; # 111; # 010; # 100;
11.3.16. Принята комбинация 0001011 циклического кода (7,4). Образующий полином
(z
3
+z
2
+1). Синдром принятой комбинация циклического кода равен :
* 110; # 111; # 010; # 100; # 001;
11.3.17. Принята комбинация 1001010 циклического кода (7,4). Синдром принятой комбинации 001. Была передана комбинация :
* 1001011; # 1001101; # 1001001; # 0001011; # 1001100;
11.3.18. Принята комбинация 1001001 циклического кода (7,4). Синдром принятой комбинации 010 . Была передана комбинация :
* 1001011; # 1001101; # 1001001; # 0001011; # 1001100;
11.3.19. Принята комбинация 1100111 циклического кода (7,4). Синдром принятой комбинации 010. Была передана комбинация :
* 1100101; # 1001101; # 1001001; # 1100011; # 11001110;
11.3.20. Приняты комбинации циклического кода (7,4): 1001010; 0010110; 0101111. Синдром принятых комбинаций 001. Порядок следования комбинаций с исправленной ошибкой
* 1001011 ; * 0010111; * 0101110 ;
11.4.1. Минимальное кодовое расстояние, необходимое для обнаружения двойных ошибок в комбинации равно
* 3; # 1 ; # 2 ; # 0 ;
11.4.2. Соответствие минимального кодового расстояния (справа) разрешенным кодовым комбинациям этого кода (слева
* 00, 01, 10; * 1;
* 000, 101, 110; * 2;
* 10010, 00001, 11101; *3;
# 4;
#0;
11.4.3. Минимальное кодовое расстояние, необходимое для обнаружения одиночных ошибок в комбинации равно
* 2; # 1 ; # 3 ; # 0 ;
11.4.4. Минимальное кодовое расстояние, необходимое для исправления одиночных ошибок в комбинации равно
* 3; # 2 ; # 1 ; # 0 ;
11.4.5. Минимальное кодовое расстояние, необходимое для обнаружения двойных ошибок в комбинации равно :
* 3; # 2 ; # 1 ; # 0 ;
11.4.6. Минимальное кодовое расстояние, необходимое для исправления двойных ошибок в комбинации равно
* 5; # 2 ; # 3 ; # 4 ;
11.4.7. Соответствие минимального кодового расстояния (справа) количеству исправляемых ошибок в комбинации (слева
* 3; *7;
* 1; *3;
* 5; *11;
* 10; *21;
# 9;
# 22;
# 2;
11.4.8. Код с основанием 2 и длиной кодовой комбинации 3 позволяет исправлять одиночные ошибки. Разрешенные комбинации этого кода
* 000 ; 111; # 011; 010; # 000; 110; # 111;
11.4.9. Код с основанием 2 и длиной кодовой комбинации 3 позволяет обнаруживать одиночные ошибки. Разрешенные комбинации этого кода
* 000, 101, 110 011; # 000; 010; 110; 111; # 011; 010; 000; 110;
11.4.10. Код имеет основание 2 и длину кодовой комбинации 3. Введите все комбинации этого кода в порядке возрастания десятичного эквивалента двоичных чисел
* 000 ; *001; *010; *011; * 100; *101 ; * 110 ; * 111;
11.4.11. Код, имеющий комбинации 000, 101, 011, 110 позволяет обнаруживать одиночные ошибки. Во сколько раз он проигрывает по скорости передачи безизбыточному коду
* 1.5 ; # 2 ; # 3 ; # 2.5 ;
11.4.12. Код, имеющий комбинации 000, 111, позволяет исправлять одиночные ошибки. Во сколько раз он проигрывает по скорости передачи безизбыточному коду
* 3 ; # 1.5 ; # 2 ; # 2.5 ;
11.4.13. Для реализации проверки на четность к комбинации 1010100 необходимо добавить
* 1 ; # 0; # 00; # 11;
11.4.14. Для реализации проверки на четность к комбинации 11010100 необходимо добавить
* 0 ; # 1 ; # 01; # 10; # 11;
11.4.15. Соответствие корректирующего символа (справа) кодовой комбинации (слева) для реализации проверки на четность
* 00011; * 0 ;
* 100011; * 1 ;
* 00000; * 0 ;
* 111111; * 0 ;
* 100011; * 1 ;
11.4.16. Код с проверкой на четность. Одиночная ошибка делает количество 1 в кодовой комбинации ________ и, таким образом, обнаруживается.
* нечетным ; # четным # равным 0; # равным количеству 0;
11.4.17. Используя код с проверкой на четность, мы получим минимальное кодовое расстояние для такого кода, равное
* 2 ; # 0; # 1; # 3;
11.4.18. Разрешенные кодовые комбинации кода 000 и 111. Принята кодовая комбинация
010. Наиболее вероятно, что была передана комбинация
* 000; # 010; # 101; # 111;
11.4.19. Разрешенные кодовые комбинации кода 000 и 111. Принята кодовая комбинация
110. Наиболее вероятно, что была передана комбинация :
* 111; # 110; # 000; # 001;
11.4.20. Разрешенные кодовые комбинации кода 000 и 111. Соответствие наиболее вероятных переданных комбинаций (справа) принятым кодовым комбинациям (слева
* 101 ; * 111;
* 001 ; * 000;
* 110 ; * 111;
* 100 ; * 000;
11.4.21. Разрешенные кодовые комбинации кода 000 и 111. Принята кодовая комбинация
110. Наиболее вероятно, что была передана комбинация 111, т.к. кодовые расстояния принятой комбинации от комбинаций 111 и 000 равны, соответственно
* 1 ; 2 ; # 1; 1; # 2; 1; # 0; 1;