Файл: Лекция 1 Тема лекции Введение. Основы химической и биологической безопасности.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.12.2023

Просмотров: 248

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.



1.4 Гигиеническая оценка воздействия на организм вредных газов и паров
При любой форме отравления характер и степень воздействия вредных веществ (ВВ) предопределяются их физиологической активностью (токсичностью) и концентрацией (дозой). Поэтому для оценки токсичности и класса опасности промышленных ядов в воздухе рабочей зоны (таблица 2), принят гигиенический показатель - предельно-допустимая концентрация ВВ (ПДКрз), определение которой дано в п.1.1. Его нельзя смешивать с ПДКнм токсичных веществ в воздухе населенных мест. Он значительно ниже, чем ПДКрз, и имеет два значения: максимально-разовая и среднесуточная концентрации.

ПДКрз является основополагающим показателем в нормировании условий труда, в разработке организационных и инженерно-технических мероприятий по профилактике профессиональных отравлений. В настоящее время на территории бывшего СССР установлены ПДКрз для широко распространенных ВВ. Многие из них приведены в ГОСТ 12.1.005-88 "ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны". Для некоторых вредных газов и паров, содержание которых в воздухе рабочей зоны определяется экспресс - методом, значения ПДКп представлены в таблице 3.

В воздухе производственных помещений нередко присутствуют несколько вредных примесей. Если они не однонаправленного действия, т, е. не производят суммарный эффект, то их средневзвешенная ГДК рассчитывается по формуле

где ПДКА, ПДКB, ..., ПДКК - предельно-допустимые концентрации вредных веществ А, В, ..., К, мг/м3;

ПА, ПB, ... ПK - процентное содержание тех же веществ в их общей сумме, принимаемой за 100%.

Если ВВ оказывают суммарный эффект (независимо от того оказывают они взаимоусиливающее или ослабляющее действие), то их гигиеническую оценку производят в соответствии с условием

где СА, СB, .., СK - фактические концентрации ВВ в воздухе рабочей зоны, мг/м3,

Эффектом суммарного действия обладает ряд токсических веществ; азот и диоксид серы, сероводород и диоксид серы, ацетон и фенол, сильные минеральные кислоты (серная, соляная, азотная), некоторые углеводороды (этилен, пропилен, бутилен и др.) и т.д. Обладая относительно небольшой ионизирующей способностью (в тысячи раз меньшей a-излучения), гамма-излучение (g- квант электромагнитной энергии) распространяется в воздухе на расстояние в несколько сот метров. Оно свободно проникает сквозь одежду, тело человека и через значительные толщи материалов. Поэтому гамма - излучение называют проникающим [5].


Для оценки проникающей способности гамма - излучения введено понятие «слой половинного ослабления», т. е. слой материала, ослабляющий излучение в два раза. Так для свинца он ориентировочно составляет 2 , бетона - 10, грунта - 14, воды - 23, полиэтилена - 24, древесины - 33 см. Гамма-излучение представляет основную опасность для человека, как источник внешнего облучения. Для оценки воздействия ионизирующих излучений используется понятие «доза» [3].

Различают экспозиционную, поглощенную и эквивалентную дозы излучения. Экспозиционная доза - это доза излучения в воздухе. Она характеризует потенциальную опасность воздействия излучения при общем и равномерном облучении тела человека (рис. 2).

Экспозиционная доза Дэкс - полный заряд d Q ионов одного знака, возникающий в воздухе при полном торможении всех электронов, которые были образованы фотонами в малом объеме воздуха, деленный на массу воздуха в этом объеме [1,17].

Единица экспозиционной дозы в СИ - кулон, деленный на килограмм (Кл / кг). Внесистемной единицей экспозиционной дозы, широко применяемой в медицине и работах по радиационной защите, является рентген (Р). Внесистемной единицей мощности экспозиционной дозы (уровня радиации) является рентген в час (Р / ч), производные единицы : миллирентген в час (мР / ч) - 10 -3 Р/ч, микрорентген в час (мк / Р/ч) - 10 -6 Р/ч. Эти единицы широко используются при измерениях в дозиметрических приборах.

В процессе лучевой болезни выделяют 4 периода: первичной лучевой реакции, скрытный (латентный), разгара и восстановления (выздоровления). В зависимости от полученной дозы различают 4 степени лучевой болезни.

Лучевая болезнь 1-й степени (легкая степень поражения) возникает при однократной дозе облучения 1- 2 Гр. Период первичной реакции начинается уже через 2- 3 часа и длится до одних суток. Он сопровождается общей слабостью, повышенной утомляемостью, тошнотой, у некоторых однократной рвотой. Эти признаки выражены слабо и обычно исчезают через сутки. Скрытый период длится 3- 5 недель. Период разгара- 10- 15 суток. Выздоровление через 1- 2 месяца [6,7].

Лучевая болезнь 2-й степени (средней тяжести) возникает при дозе облучения 2- 4 Гр. Период первичной реакции начинается через 1- 2 часа и длится до двух суток. Он сопровождается сильной головной болью, значительным повышением температуры, тошнотой и рвотой, расстройством функций желудочно-кишечного тракта, появлением кровотечений из внутренних органов. Скрытый период длится 10- 15 суток. Выздоровление через 2- 3 месяца. Смертельный исход 20%.



Лучевая болезнь 3-й степени (тяжелая степень поражения) возникает при дозах облучения 4- 6 Гр. Период первичной реакции начинается через 10- 60 минут и длится до 3- 4 суток. Он сопровождается многократной, иногда неукротимой рвотой в течении 5-8 часов, резкой слабостью, головной болью, головокружением, шаткой походкой, жаждой . Скрытый период длится 5- 10 суток.

Период разгара - до 3- 4 недель. Выздоровление возможно в условиях проведения своевременного и эффективного лечения через 3- 6 месяцев. Смертность до 70%.

Лучевая болезнь 4-й степени (крайне тяжелая степень поражения) развивается при дозах облучения свыше 6 Гр. Период первичной реакции начинается через 10- 15 минут и длится 3- 4 суток. Характеризуется неукротимой рвотой, тяжелым состоянием . Скрытый период отсутствует. Период разгара - как и при тяжелой стадии. Выздоровление маловероятно. Смерть в течение двух недель.

Лучевое поражение кожи, как и лучевая болезнь, протекает в четыре стадии: ранняя лучевая реакция, скрытый период, период разгара и период заживления.

В зависимости от полученной дозы поражения кожи могут быть: легкой степени - при местном облучении в дозах 8 - 10 Гр, средней - 10 - 20 Гр и тяжелой - 30 Гр и более. Продолжительность скрытого периода при легкой и тяжелой степени составляет соответственно от 2 до 1 недели. Полное восстановление кожи длится от 2 до 6 месяцев и сопровождается шелушением, пигментацией кожи, а при тяжелой степени - образованием эрозии и язв.

А какова опасность внутреннего облучения людей радионуклидами, попавшими внутрь организма?

Она, как установлено, зависит от многих факторов: физико-химических свойств радионуклидов, путей и продолжительности их поступления в организм, скорости выделения и другого.

Основными путями поступления радионуклидов внутрь организма человека являются ингаляционный (через органы дыхания) и так называемый пероральный (через желудочно-кишечный тракт).

При поступлении радионуклидов в легкие с вдыхаемым воздухом важное значение имеет степень дисперсности твердых частиц, склонность радионуклидов к гидролизу (реакции обменного разложения между радионуклидами и водой), период полураспада радионуклидов и другое.

Так, крупные частицы (более 5 микрон) почти все задерживаются в верхних дыхательных путях и не попадают в кровь. Более мелкие частицы (менее 1

микрона) частично выдыхаются обратно, часть их задерживается в верхних дыхательных путях и около 25 процентов всасываются в кровь.

При хронических поступлениях происходит накопление радионуклидов в органах дыхания. Поэтому в некоторых случаях критическим органом по облучению могут быть легкие.


Попадая в организм через желудочно-кишечный тракт, некоторые радионуклиды распределяются в нем более или менее равномерно, другие концентрируются преимущественно в отдельных органах.

Следует заметить, что накопление радионуклидов при хроническом поступлении неодинаково и характеризуется кратностью накопления, т. е. отношением максимального накопленного количества радионуклида в организме

или органе к величине ежедневного накопления.

Кратность накопления зависит от всасывания радионуклида, скорости его выделения вследствие обменных процессов и периода полураспада радионуклида.

Например, йод-131 накапливается в щитовидной железе с кратностью 164; цезий- 137 - в мышечной ткани с кратностью 2,6, в легких - 0,2; стронций-90 - в скелете с кратностью 91.

Скорость выведения радионуклида из организма зависит от его биологического периода полувыведения Т6 (времени, в течение которого выводится половина попавшего в организм вещества) и период полураспада Т, которые вместе определяют эффективный биологический период полувыведения Тэф. При этом, если Т . Т6, то Тэф =Т6. И наоборот, если Т . Т6, то Тэф = Т. Труднее всего удаляются из организма радионуклиды, химически связанные с костной тканью; легче - накапливаемые в мягких тканях.
Практическое занятие №2

Тема: Основные методы измерения радиоактивности.
Методы контроля состояния воздуха рабочей зоны
В каждом производственном помещении организуется систематический контроль за содержанием вредных газов, паров и пыли в воздухе рабочей зоны. При этом места отбора проб воздуха определяются органами санитарного надзора. Все средства контроля должны обеспечивать избирательное определение содержания ВВ на уровне 0,5 ПДК (в приточном воздухе - 0,3 ПДК) в течение не более 30 мин; точность измерений в пределах ±10%; специфическое определение содержания ВВ в присутствии других веществ, максимальная ошибка измерения не должна превышать ±25%,

Все известные методы анализа загазованности воздушной среды подразделяются на основные три группы: лабораторные, экспрессные и автоматические. Они базируются на следующих физико-химических способах определения содержания вредных примесей воздуха: лабораторные на фотометрических, люминесцентных, хроматографических, спектроскопических, полярографических; экспрессные на колориметрических, линейно-колористических.


Фотометрический способ основан на способности светопоглощения окрашенными растворами. Люминесцентный - на свойствах некоторых веществ отдавать поглощенную ими энергию в виде светового излучения. Спектроскопический - на способности элементов, помещенных в пламя вольтовой дуги с температурой 3500 - 4000 °С, давать определенный спектр излучения. Полярографический - на измерении предельного тока диффузии, возникающего при электролизе испытуемого раствора с помощью ртутных электродов. Хроматографический - на различной растворимости компонентов газовой смеси в органическом растворителе. Колориметрический - на протягивании загрязненного воздуха через раствор, фильтровальную бумагу или зернистый твердый сорбент и измерении длины окрашенного столбика порошка по заранее приготовленным шкалам, показывающим зависимость этой длины от концентрации вредной примеси.

Лабораторные методы анализа состояния воздуха наиболее точны, но неоперативны и требуют много времени, квалифицированного работника и сложного оборудования. Поэтому они применяются в основном при проведении научно-исследовательских работ. Автоматические методы позволяют быстро, точно и беспрерывно получать информацию о содержании вредных веществ в воздухе помещений. Однако, они также требуют сложного оборудования, что не всегда оправдано на производстве. Вследствие этого их используют, главным образом, в пожаро- и взрывоопасных процессах. В качестве примера можно указать на газоанализаторы типа ПГФ, СКВ-ЗМ, СГП-1 и др. Они настраиваются на уровень ПДК опасных веществ в воздухе помещения, подают сигнал в случае превышения этого уровня и обеспечивают осуществление автоматических профилактических мер (пожаротушение, отключение электроэнергии, включение аварийной вентиляции и др ).

В практике промышленных предприятий все большее применение нашли экспрессные методы и особенно их линейно-колористический способ. Объясняется это тем, что с его помощью за сравнительно короткий срок (3 - 20 мин) удается получить достаточно точные данные о содержании токсичных веществ в воздухе рабочей зоны. В производственных условиях это чрезвычайно важно, поскольку позволяет оперативно оценить качество воздуха и принять необходимые меры безопасности Кроме того, этот способ не требует для проведения анализа громоздкого оборудования и квалифицированного персонала.