Файл: Лекция 1 Тема лекции Введение. Основы химической и биологической безопасности.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 12.12.2023
Просмотров: 256
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
, 144Ce , 3H и 239Ru и 240Ru , 241Am, причем три последних нуклида вносят 0,1% общей дозы.
Облучение людей радиоактивными продуктами, образовавшимися после испытаний ядерного оружия, складывается из внутреннего облучения (ингаляция радионуклидов с приземным воздухом и поступления их с пищей и водой) и внешнего облучения (излучения радионуклидов, содержащихся в приземном воздухе и на поверхности земли).
Дозы облучения от выбросов предприятий ядерной энергетики.
В конце 1989 г. в 26 странах эксплуатировалось в общей сложности 416 энергетических реакторов общей мощностью 274 МВт. 100 реакторов строится.
По прогнозу НКДАР (см. сокращение обозначений), в мире будет действовать АЭС общей энергетической мощностью 500 ГВт, хотя этот прогноз до некоторой степени носит умозрительный характер [2].
Работа АЭС требует добычи урановой руды, ее переработки в обогащенное ядерное топливо 235U , производства твэлов, переработки обогащенного топлива для последующего использования извлеченного делящегося материала, переработки и захоронения образующихся радиоактивных отходов. Доза облучения от выбросов предприятий ядерной энергетики составляет 0,15% фонового облучения.
ДОЗЫ ОБЛУЧЕНИЯ ПРИ МЕДЕЦИНСКИХ ОБСЛЕДОВАНИЯХ И РАДИОТЕРАПИИ
Использование ионизирующих излучений и радиоактивных веществ в медицине для диагностики и радиотерапии является основным источником искусственного облучения человека, превышающим воздействие всех других искусственных источников. Эти дозы создаются при рентгеновской диагностике состояния отдельных органов человека: печени, легких, почек, щитовидной железы и др.) с помощью радиоактивных фармацевтических препаратов (32P, 57Cr, 99 mTc, 133Xe, 131I, 198Au, 203Hg и др.), вводимых внутрь организма; радиационной терапии с использованием радиоактивных источников: 60Co (75,6% всех терапевтических установок), 137Cs (5,6%), бетатронов (6,9%), линейных ускорителей (10,7%) и указанных выше радиофармпрепаратов.
Доза облучения костного мозга при рентгенографии зубов может составлять от 60 до 130 мкЗв в черепе, от 140 до 8500 мкЗв в нижней челюсти и от 24 до 1160 мкЗв в шейных позвонках [2].
Поглощенная доза в облучаемом с целью терапии органе очень велика и обычно составляет 20- 60 Гр за несколько сеансов.
Доза облучения при применении радиофармацевтических препаратов, как и при изотопной диагностике, может изменяться в широких пределах в зависимости от физико-химических и биологических свойств радионуклида, химического состава препарата, способа его введения в организм и т. п.
Индивидуальная доза на отдельный критический орган при использовании радиофармацевтических препаратов измеряется тысячами микрогрей, в отдельных случаях достигая даже единиц грей, а доза излучения на гонады составляет тысячи - десятки тысяч микрогрей на одну процедуру.
НОРМЫ РАДИОЦИОННОЙ БЕЗОПАСНОСТИ (НРБ –99)
НРБ – 99 [I] – предусматривают следующие основные принципы радиационной безопасности:
· не превышение допустимых пределов индивидуальных доз облучения граждан от всех источников излучения (принцип нормирования);
· запрещение всех видов деятельности по использованию источников излучения, при которых полученная для человека и общества польза не превышает риск возможного вреда, причиненного дополнительным облучением (принцип обоснования);
· поддержание на возможно низком и достижимом уровне с учетом экономических и социальных факторов индивидуальных доз облучения и числа облучаемых лиц при использовании любого источника излучения (принцип оптимизации).
Дозовые пределы, установленные НРБ – 99 не включают дозу, полученную пациентом при медицинских исследованиях и лечении, и дозу, обусловленную естественным фоном излучения.
В зависимости от возможных последствий влияния ионизирующих излучений на организм НРБ – 99 установлены следующие категории облучения.
Категория А – персонал (профессиональные работники) – лица, которые постоянно или временно непосредственно работают с источниками ионизирующих излучений.
Категория Б – персонал, не связанный с источниками ионизирующих излучениями.
Коллективные нагрузки в среднем для населения РФ в 1981- 1985гг., характеризующие удельные коллективные (средние индивидуальные) дозы облучения населения за счет всех основных источников облучения, представлены в таблице П 6 (см. в приложении).
Данные в табл. П 6 свидетельствуют о решающем вкладе в эффективную эквивалентную дозу ЕРФ, ТИЕРФ за счет пребывания в зданиях, а также рентгенологических и радиоизотопных диагностических исследований. Излучение, обусловленное искусственными радионуклидами, рассеянными в биосфере.
2. Определение содержания вредных газов и паров в воздухе рабочей зоны
Определение концентрации газов газоанализатором УГ-2
Назначение и принцип работы
Универсальный переносной газоанализатор типа УГ-2 предназначен для определения в воздухе производственных помещений концентрации практически любых вредных газов и паров.
Прибор обеспечивает определение содержания вредных газов (паров) в воздухе рабочей зоны при следующих условиях; содержание кислорода, водорода, азота и инертных газов любое; содержание пыли не более 40 мг/м3, давление - 740 - 780 мм ртутного столба, относительная влажность не более 90% и температура от +10°С до +30°С,
Принцип работы прибора основан на линейно-колористическом способе экспресс-метода, т. е., на изменении длины окрашенного столбика порошка в индикаторной трубке, полученного при протягивании через неё анализируемого воздуха. Просачивание воздуха осуществляется воздухозаборным устройством газоанализатора. Длина окрашенного столбика индикаторного порошка, пропорциональна концентрации исследуемого газа или пара в воздухе, измеряется по шкале, градуированной в мг/м3. Погрешность показания прибора не более ±10% от верхнего предела каждой шкалы.
Наименование анализируемых газов, их ПДК в воздухе рабочей зоны, объем просасываемого воздуха, цвет индикаторных порошков после анализа, пределы измерения, улавливаемые фильтрующим патроном, мешающие при анализе воздуха примеси, приведены в таблице 3.
Описание газоанализатора
Газоанализатор УГ-2 состоит из воздухозаборного устройства со съемной подставкой для шкал, трех штоков в комплекте, измерительных шкал, индикаторных трубок, фильтрующих патронов и набора принадлежностей с реактивами для приготовления трубок и патронов, а также установки для создания загазованности воздуха.
Таблица 3. Характерные показатели при определении концентрации газов и паров газоанализатором
Воздухозаборное устройство
Воздухозаборное устройство состоит из резинового сильфона с расположенной внутри стакана пружиной, удерживающей сильфон в растянутом состоянии (рисунок 1). В закрытой части корпуса (1) помещается резиновый сильфон (2) с двумя фланцами (3) и стаканом (4), в котором находится пружина (5). Во внутренних гофрах сильфона установлены запорные кольца (6) для придания сильфону жесткости и сохранения постоянного объема.
Рисунок 1. Схема воздухозаборного устройства УГ-2
1 - корпус прибора; 2- резиновый сильфон; 3 - нижний неподвижный фланец сильфона; 4 - стакан пружины сильфона; 5 - пружина сильфона; 6 - распорные кольца; 7 - верхняя плата прибора; 8 - неподвижная направляющая втулка; 9 - шток; 10 - отверстие для хранения штока; 11 - подставка для измерительных шкал; 12 - стопор; 13 - штуцер; 14 - трубка от штурца к нижнему фланцу сильфона; 15 - отводная резиновая трубка от штуцера к индикаторным трубкам; 16 - продольные канавки штока; 17 - углубленная в продольной канавке штока.
На верхней плате (7) имеются неподвижная втулка (8) для направления штока (9) при сжатии сильфона, отверстие (10) для хранения штока в нерабочем положении и подставка для измерительных шкал (11). На неподвижной направляющей втулке устроен стопор (12) для фиксации штоком объема воздуха, просасываемого сильфоном.
На штуцере (13) с внутренней стороны присоединена резиновая трубка (14), которая через нижний фланец сильфона соединяется с его внутренней полостью. На наружный конец штуцера одета отводная резиновая трубка (15), в которую вставляется индикаторная трубка. К последней, в свою очередь, присоединяется фильтрующий патрон, улавливающий примеси, мешающие анализу воздуха.
Просасывание исследуемого воздуха через индикаторную трубку производится после предварительного сжатия сильфона штоком. На гранях (под головкой штока) обозначены объемы просасываемого при анализе воздуха. На цилиндрической поверхности штока имеются четыре продольные канавки (16) с двумя углублениями в каждой (17), служащими для фиксации объема протягиваемого воздуха. Расстояние между углублениями в канавках подобрано таким ообразом, чтобы при ходе штока от одного углубления до другого сильфон просасывал необходимое для анализа данного газа количество воздуха.
На подставку для измерительных шкал перед проведением анализа устанавливаются шкалы и индикаторная трубка (для некоторых газов дополнительно еще фильтрующий патрон). Индикаторная трубка и фильтрующий патрон располагаются в специальном зажиме. Подставка с ними и измерительными шкалами легко снимается с гнезда, что позволяет осуществить определение концентрации газов на некотором расстоянии от прибора.
Измерительные шкалы, индикаторные трубки и фильтрующие патроны
В зависимости от пределов измерений на каждый определяемый газ имеются одна или две шкалы, представляющие пластинки, градуированные в мг/м3 или мг/л (в последнем случае для предоставления данных в мг/м3 результаты анализа надо умножить на 1000). На шкалах указаны химический символ или название газа и объем просасываемого воздуха при анализе в мл. При проведении анализа объемы протягиваемого воздуха, указанные на головке штока и шкале, по которой производится отсчет, должны совпадать.
Индикаторная трубка для определения концентрации анализируемого газа в воздухе (рисунок 2) представляет собой стеклянную трубку (1) длиной 90-91 мм и внутренним диаметром 2,5 -2,6 мм, заполненную индикаторным порошком (3). Порошок в трубке удерживается с помощью тонкого слоя 0,5 - 1 мм ваты (5) и пыжей из эмалированной медной проволоки (7), диаметром 0,28 мм. Концы трубок герметизируются колпачками из конторского сургуча, удаляемого перед работой.
Фильтрующий патрон (рисунок 2)- это стеклянная трубка (2) диаметром 10 мм, длиной 86 мм с перетяжками, окруженными с обоих концов до 5 и 8 мм. Они заполняются поглотительными порошками (4), служащими для улавливания примесей, мешающих определению газов. Порошок в трубке удерживается двумя тампонами из гигроскопической ваты (6). При проведении анализа оксидов азота за место фильтрующего патрона используется окислительная трубка, а при определении содержания ацетона в воздухе - поглотительная трубка.
Рисунок 2. Набор принадлежностей УГ-2.
1 и а - пустая и снаряженная индикаторные трубки; 2 и б - пустой и снаряженный фильтрующие патроны; 3 и 4 - индикаторные и поглотительные порошки; 5 и 6 - тонкий и толстый слои ваты; 7 - пыж; 8 - стальной стержень; 9 - штырек; 10 - ампуль с индикаторным или индикаторным порошками; 11 и 12 - воронки с тонким и толстым концами; 13 - заглушки с резиновой трубкой; 14 - колпачок из конторского сургуча; 15 и 16 - узкий и широкий концы фильтрующего патрона.
Облучение людей радиоактивными продуктами, образовавшимися после испытаний ядерного оружия, складывается из внутреннего облучения (ингаляция радионуклидов с приземным воздухом и поступления их с пищей и водой) и внешнего облучения (излучения радионуклидов, содержащихся в приземном воздухе и на поверхности земли).
Дозы облучения от выбросов предприятий ядерной энергетики.
В конце 1989 г. в 26 странах эксплуатировалось в общей сложности 416 энергетических реакторов общей мощностью 274 МВт. 100 реакторов строится.
По прогнозу НКДАР (см. сокращение обозначений), в мире будет действовать АЭС общей энергетической мощностью 500 ГВт, хотя этот прогноз до некоторой степени носит умозрительный характер [2].
Работа АЭС требует добычи урановой руды, ее переработки в обогащенное ядерное топливо 235U , производства твэлов, переработки обогащенного топлива для последующего использования извлеченного делящегося материала, переработки и захоронения образующихся радиоактивных отходов. Доза облучения от выбросов предприятий ядерной энергетики составляет 0,15% фонового облучения.
ДОЗЫ ОБЛУЧЕНИЯ ПРИ МЕДЕЦИНСКИХ ОБСЛЕДОВАНИЯХ И РАДИОТЕРАПИИ
Использование ионизирующих излучений и радиоактивных веществ в медицине для диагностики и радиотерапии является основным источником искусственного облучения человека, превышающим воздействие всех других искусственных источников. Эти дозы создаются при рентгеновской диагностике состояния отдельных органов человека: печени, легких, почек, щитовидной железы и др.) с помощью радиоактивных фармацевтических препаратов (32P, 57Cr, 99 mTc, 133Xe, 131I, 198Au, 203Hg и др.), вводимых внутрь организма; радиационной терапии с использованием радиоактивных источников: 60Co (75,6% всех терапевтических установок), 137Cs (5,6%), бетатронов (6,9%), линейных ускорителей (10,7%) и указанных выше радиофармпрепаратов.
Доза облучения костного мозга при рентгенографии зубов может составлять от 60 до 130 мкЗв в черепе, от 140 до 8500 мкЗв в нижней челюсти и от 24 до 1160 мкЗв в шейных позвонках [2].
Поглощенная доза в облучаемом с целью терапии органе очень велика и обычно составляет 20- 60 Гр за несколько сеансов.
Доза облучения при применении радиофармацевтических препаратов, как и при изотопной диагностике, может изменяться в широких пределах в зависимости от физико-химических и биологических свойств радионуклида, химического состава препарата, способа его введения в организм и т. п.
Индивидуальная доза на отдельный критический орган при использовании радиофармацевтических препаратов измеряется тысячами микрогрей, в отдельных случаях достигая даже единиц грей, а доза излучения на гонады составляет тысячи - десятки тысяч микрогрей на одну процедуру.
НОРМЫ РАДИОЦИОННОЙ БЕЗОПАСНОСТИ (НРБ –99)
НРБ – 99 [I] – предусматривают следующие основные принципы радиационной безопасности:
· не превышение допустимых пределов индивидуальных доз облучения граждан от всех источников излучения (принцип нормирования);
· запрещение всех видов деятельности по использованию источников излучения, при которых полученная для человека и общества польза не превышает риск возможного вреда, причиненного дополнительным облучением (принцип обоснования);
· поддержание на возможно низком и достижимом уровне с учетом экономических и социальных факторов индивидуальных доз облучения и числа облучаемых лиц при использовании любого источника излучения (принцип оптимизации).
Дозовые пределы, установленные НРБ – 99 не включают дозу, полученную пациентом при медицинских исследованиях и лечении, и дозу, обусловленную естественным фоном излучения.
В зависимости от возможных последствий влияния ионизирующих излучений на организм НРБ – 99 установлены следующие категории облучения.
Категория А – персонал (профессиональные работники) – лица, которые постоянно или временно непосредственно работают с источниками ионизирующих излучений.
Категория Б – персонал, не связанный с источниками ионизирующих излучениями.
Коллективные нагрузки в среднем для населения РФ в 1981- 1985гг., характеризующие удельные коллективные (средние индивидуальные) дозы облучения населения за счет всех основных источников облучения, представлены в таблице П 6 (см. в приложении).
Данные в табл. П 6 свидетельствуют о решающем вкладе в эффективную эквивалентную дозу ЕРФ, ТИЕРФ за счет пребывания в зданиях, а также рентгенологических и радиоизотопных диагностических исследований. Излучение, обусловленное искусственными радионуклидами, рассеянными в биосфере.
2. Определение содержания вредных газов и паров в воздухе рабочей зоны
Определение концентрации газов газоанализатором УГ-2
Назначение и принцип работы
Универсальный переносной газоанализатор типа УГ-2 предназначен для определения в воздухе производственных помещений концентрации практически любых вредных газов и паров.
Прибор обеспечивает определение содержания вредных газов (паров) в воздухе рабочей зоны при следующих условиях; содержание кислорода, водорода, азота и инертных газов любое; содержание пыли не более 40 мг/м3, давление - 740 - 780 мм ртутного столба, относительная влажность не более 90% и температура от +10°С до +30°С,
Принцип работы прибора основан на линейно-колористическом способе экспресс-метода, т. е., на изменении длины окрашенного столбика порошка в индикаторной трубке, полученного при протягивании через неё анализируемого воздуха. Просачивание воздуха осуществляется воздухозаборным устройством газоанализатора. Длина окрашенного столбика индикаторного порошка, пропорциональна концентрации исследуемого газа или пара в воздухе, измеряется по шкале, градуированной в мг/м3. Погрешность показания прибора не более ±10% от верхнего предела каждой шкалы.
Наименование анализируемых газов, их ПДК в воздухе рабочей зоны, объем просасываемого воздуха, цвет индикаторных порошков после анализа, пределы измерения, улавливаемые фильтрующим патроном, мешающие при анализе воздуха примеси, приведены в таблице 3.
Описание газоанализатора
Газоанализатор УГ-2 состоит из воздухозаборного устройства со съемной подставкой для шкал, трех штоков в комплекте, измерительных шкал, индикаторных трубок, фильтрующих патронов и набора принадлежностей с реактивами для приготовления трубок и патронов, а также установки для создания загазованности воздуха.
Таблица 3. Характерные показатели при определении концентрации газов и паров газоанализатором
Наименование анализируемых газов(паров) | ПДК мг/м3 | Объем просасы- ваемого воздуха (м3) | Пределы измерения (мг/м3) | Время просасы- вания воздуха (мин) | Цвет индикаторного порошка после анализа | Улавливаемые фильтрующим патроном примеси в анализируемом воздухе | Мешающие анализу воздуха примеси в нем |
Аммиак | 20 | 250 30 | 30 300 | 42 | синий | - | Пары кислот, щелочей и аминов |
Ацетилен | | 265 60 | 1400 6000 | 5 3 | светло коричневый | Сероводород, фосфо- ристый и кремнистый водород, ацетон, аммиак, пары воды | - |
Ацетон | 200 | 300 | 2000 | 7 | желтый | Пары уксусной и соляной кислоты, сернистый ангидрид при их концентрации до 10 ПДК | Кетоны, уксусный и сернистый ангидрид, хлористый водород, уксусная кислота, пары сложных эфиров при их концентрации более 10 ПДК |
Бензин | 300 | 300 60 | 1000 5000 | 7 4 | светло коричневый | Углеводороды ароматические и непредельные | - |
Бензол | 20 | 350 100 | 200 1000 | 7 4 | серо-зеленый | Пары воды | Углеводороды жирные и ароматические |
Ксилол | 50 | 300 120 | 500 2000 | 4 3 | Красно фиолетовый | То же | То же |
Толуол | 50 | 300 100 | 500 2000 | 7 4 | Темно коричневый | То же | То же |
Окислы азота | 5 | 325 150 | 50 250 | 7 5 | Красный | - | Галоиды и озон при концентрации более 10 ПДК |
Сернистый ангидрид | 10 | 300 60 | 30 200 | 5 3 | белый | Сероводорд, аммиак, двуокись азота, пары воды и серной кислоты | - |
Серово- дород | 10 | 300 30 | 30 300 | 5 2 | Коричневый | - | Меркаптаны |
Углево- дороды нефти | 300 | 300 | 1000 | 7 | светло коричневый | Пары воды, углеводороды ароматические и непредельные | - |
Хлор | 1 | 350 100 | 15 80 | 7 4 | Красный | - | Бром, йод, окислители, хлорамины |
Этиловый эфир | 300 | 400 | 3000 | 10 | Зеленый | Пары воды, фенол, этиловый спирт | - |
Воздухозаборное устройство
Воздухозаборное устройство состоит из резинового сильфона с расположенной внутри стакана пружиной, удерживающей сильфон в растянутом состоянии (рисунок 1). В закрытой части корпуса (1) помещается резиновый сильфон (2) с двумя фланцами (3) и стаканом (4), в котором находится пружина (5). Во внутренних гофрах сильфона установлены запорные кольца (6) для придания сильфону жесткости и сохранения постоянного объема.
Рисунок 1. Схема воздухозаборного устройства УГ-2
1 - корпус прибора; 2- резиновый сильфон; 3 - нижний неподвижный фланец сильфона; 4 - стакан пружины сильфона; 5 - пружина сильфона; 6 - распорные кольца; 7 - верхняя плата прибора; 8 - неподвижная направляющая втулка; 9 - шток; 10 - отверстие для хранения штока; 11 - подставка для измерительных шкал; 12 - стопор; 13 - штуцер; 14 - трубка от штурца к нижнему фланцу сильфона; 15 - отводная резиновая трубка от штуцера к индикаторным трубкам; 16 - продольные канавки штока; 17 - углубленная в продольной канавке штока.
На верхней плате (7) имеются неподвижная втулка (8) для направления штока (9) при сжатии сильфона, отверстие (10) для хранения штока в нерабочем положении и подставка для измерительных шкал (11). На неподвижной направляющей втулке устроен стопор (12) для фиксации штоком объема воздуха, просасываемого сильфоном.
На штуцере (13) с внутренней стороны присоединена резиновая трубка (14), которая через нижний фланец сильфона соединяется с его внутренней полостью. На наружный конец штуцера одета отводная резиновая трубка (15), в которую вставляется индикаторная трубка. К последней, в свою очередь, присоединяется фильтрующий патрон, улавливающий примеси, мешающие анализу воздуха.
Просасывание исследуемого воздуха через индикаторную трубку производится после предварительного сжатия сильфона штоком. На гранях (под головкой штока) обозначены объемы просасываемого при анализе воздуха. На цилиндрической поверхности штока имеются четыре продольные канавки (16) с двумя углублениями в каждой (17), служащими для фиксации объема протягиваемого воздуха. Расстояние между углублениями в канавках подобрано таким ообразом, чтобы при ходе штока от одного углубления до другого сильфон просасывал необходимое для анализа данного газа количество воздуха.
На подставку для измерительных шкал перед проведением анализа устанавливаются шкалы и индикаторная трубка (для некоторых газов дополнительно еще фильтрующий патрон). Индикаторная трубка и фильтрующий патрон располагаются в специальном зажиме. Подставка с ними и измерительными шкалами легко снимается с гнезда, что позволяет осуществить определение концентрации газов на некотором расстоянии от прибора.
Измерительные шкалы, индикаторные трубки и фильтрующие патроны
В зависимости от пределов измерений на каждый определяемый газ имеются одна или две шкалы, представляющие пластинки, градуированные в мг/м3 или мг/л (в последнем случае для предоставления данных в мг/м3 результаты анализа надо умножить на 1000). На шкалах указаны химический символ или название газа и объем просасываемого воздуха при анализе в мл. При проведении анализа объемы протягиваемого воздуха, указанные на головке штока и шкале, по которой производится отсчет, должны совпадать.
Индикаторная трубка для определения концентрации анализируемого газа в воздухе (рисунок 2) представляет собой стеклянную трубку (1) длиной 90-91 мм и внутренним диаметром 2,5 -2,6 мм, заполненную индикаторным порошком (3). Порошок в трубке удерживается с помощью тонкого слоя 0,5 - 1 мм ваты (5) и пыжей из эмалированной медной проволоки (7), диаметром 0,28 мм. Концы трубок герметизируются колпачками из конторского сургуча, удаляемого перед работой.
Фильтрующий патрон (рисунок 2)- это стеклянная трубка (2) диаметром 10 мм, длиной 86 мм с перетяжками, окруженными с обоих концов до 5 и 8 мм. Они заполняются поглотительными порошками (4), служащими для улавливания примесей, мешающих определению газов. Порошок в трубке удерживается двумя тампонами из гигроскопической ваты (6). При проведении анализа оксидов азота за место фильтрующего патрона используется окислительная трубка, а при определении содержания ацетона в воздухе - поглотительная трубка.
Рисунок 2. Набор принадлежностей УГ-2.
1 и а - пустая и снаряженная индикаторные трубки; 2 и б - пустой и снаряженный фильтрующие патроны; 3 и 4 - индикаторные и поглотительные порошки; 5 и 6 - тонкий и толстый слои ваты; 7 - пыж; 8 - стальной стержень; 9 - штырек; 10 - ампуль с индикаторным или индикаторным порошками; 11 и 12 - воронки с тонким и толстым концами; 13 - заглушки с резиновой трубкой; 14 - колпачок из конторского сургуча; 15 и 16 - узкий и широкий концы фильтрующего патрона.