Файл: Лабораторная работа 6 двухтактный бестрансформаторный.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.12.2023

Просмотров: 154

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

1 Цель работы

2 Задание

3 Описание принципиальной схемы исследуемого усилителя

Методические указания по выполнению работы

5 Содержание отчета

Однотактные выходные каскады Различают резисторные, трансформаторные и дроссельные выходные каскады. Резисторные каскады предназначены для усиления высоких уровней напряжения и ши-роко применяются в операционных усилителях, УПТ, балансных и дифференциальных каскадах, широкополосных и импульсных усилителях [2,3].Применение согласующего трансформатора в выходных каскадах позволяет обеспечи- вать оптимальное, с точки зрения согласования с нагрузкой, сопротивление в выходной цепи АЭ. Трансформаторные выходные каскады получили широкое применение в усили- телях многоканальной связи, когда входной и выходной трансформаторы выполняют функцию не только согласующих цепей, но и являются компонентом цепи общей частот- но-зависимой отрицательной ОС.Дроссельный каскад, обладая свойствами во многом схожими с трансформаторным каскадом, при этом не позволяет обеспечивать оптимальное сопротивление нагрузки и по- этому находит ограниченное применение.ТрансформаторныйкаскадВ однотактном выходном каскаде усиление осуществляется одним транзистором (рис.6.39,а), работающем в режиме Аа) б)Рис.6.39Выходной трансформатор Т преобразует сопротивление внешней нагрузки Rн (например, волновое сопротивление коаксиальной линии) в сопротивление коллекторной нагрузки Rн к :Rн к = r 1 + (r 2+ Rн)/n2т , (6.1)где r 1 и r 2 — активные сопротивления первичной и вторичной обмоток трансформатора (сопротивление потерь, которым обычно пренебрегают, т.к. Rн >> r 1 + r 2); nт = ω 1/ω 2 – коэффициент трансформации, где ω 1 и ω 2 – число витков первичной и вторичной обмо- ток трансформатора.Выходной трансформатор одновременно позволяет исключить взаимное влияние на- грузки на режим работы АЭ и, наоборот. Нагрузочная прямая ВС (рис.6.41,б), наклон ко- торой величиной сопротивления Rн к, проходит через точку А, положение которой опреде- ляется режимом в ИРТ (Uкэ0, I к0), задаваемой на нагрузочной прямой по постоянному то- ку. Если сопротивление первичной обмотки трансформатора r 1 = 0, то нагрузочная прямая по постоянному току проходит вертикально через точку А и Uкэ0 = Е. Временные диа- граммы (рис.6.41,б) отражают характер мгновенных значений коллекторного тока и на- пряжения максимально возможной амплитуды при усилении гармонического сигнала. Точки В и С определяют границы используемой нагрузочной прямой при работе транзи- стора в режиме А. Точка В соответствует границе перехода в режим насыщения, а точка С– в режим отсечки. Напряжение в точке В и ток в точке С являются минимальными и на- зываются остаточными (u ост, i ост).Эффективность работы транзистора определяется коэффициентамииспользованиятока и напряжения транзистора i Iкm / Iк0, u Uкm /Uк0, (6.2) где Uкэm, I кm – амплитуда напряжения и тока на коллекторе транзистора (рис.6.41,б) Коэффициентыi и u выбирают исходя из требований получения максимально воз- можной выходной мощности при заданном уровне нелинейных искажений, что ограни- чивает их значения в реальных условиях до величины 0,8 …0,9.Мощность, отдаваемая в эквивалентную нагрузку транзистора в коллекторной цепи, Rн кР = 0,5 Uкэm I кm (6.3)Мощность, потребляемая от источника питанияР0 = 0,5 Uкэ0 I к0 (6.4)При этом КПД каскада будетη = Р/ Р0 = Uкэm I кm/2Е I к0 = 0,5 i u0 , (6.5)где Е – напряжение источника питания, а 0 = U кэ0 /Е – коэффициент использования на- пряжения источника питания.Поскольку 0 <1, u<1, i< 1, а I кm < I к0 , Uкэm < U кэ0< , то КПД каскада всегдаменьше 50%, хотя и выше чем для резисторного каскада. Обычно коэффициенты исполь- зования не стремятся получать наибольшими (равными единице) поскольку вблизи точек В и С работа транзистора сопровождается большими нелинейными искажениями.С учетом КПД трансформатора η т , мощность отдаваемая в реальную нагрузку RнР н = Р·ηт (6.6)Транзистор выбирают по значению мощности, рассеиваемой на коллекторе Р к.макс по ус- ловиюР к.макс  (2,5…3,5) Р (6.7)Поскольку мощность на нагрузке пропорциональна квадрату амплитуды напряжения, то в режиме А (при неизменном среднем токе питания) уменьшение амплитуды напряже- ния на нагрузке приводит к быстрому уменьшению КПД. Кроме того, как показывает (6.5) мощность, выделяемая на коллекторе транзистора Р кР к = Р0 — Р (6.8)будет сильно изменяться при колебаниях уровня входного сигнала.К другим недостаткам трансформаторных каскадов следует отнести большие размеры, массу, стоимость, сравнительно узкую полосу пропускания и невозможность реализации усилителя по интегральной технологии. 1   2   3   4   5   6   7   8

Двухтактные выходные каскады Двухтактными называют каскады, содержащие два усилительных элемента (иногда две группы параллельно соединенных АЭ), работающих на общую нагрузку, а фазы выходных токов которых, противоположны. Отдельно взятый АЭ, с цепями связи и питания, обра- зует плечо двухтактного каскада.В зависимости от способа управления АЭ двухтактные каскады подразделяются на кас- кады: с параллельным управлением однофазным входным напряжением (при использовании в качестве АЭ БТ применяют транзисторы с разным типом проводимости, работающие в режиме В или АВ) с параллельным управлением двухфазным напряжением (применяют однотипные БТ, ра- ботающие в режиме А или АВ) с последовательнымуправлениемоднофазнымнапряжением (применяют однотипные БТ, работающие в режиме А, когда сигнал с выхода первого из них, подается на вход вто- рого). Благодаря отличию фаз выходных токов на π происходит частичная компенсация нели- нейных искажений, вносимых плечами. Использование режима А в выходных каскадах обеспечивает очень малые нелинейные искажения, меньшие чем в однотактной схеме. Транзисторные схемы двухтактных оконечных каскадов, использующих выходной трансформатор, могут выполняться с резисторно-емкостной или с трансформаторной свя- зью с предоконечным каскадом (рис.6.40)Рис.6.40Резисторы R1 и R2 – делитель напряжения питания, обеспечивающий смещение на оба транзистора VT1 и VT2и задающий ток коллектора каждого транзистора I к0 в исходной рабочей точке. Резистор R3 — сопротивление эмиттерной температурной стабилизации. Для выравнивания коллекторных токов плеч вместе с резистором R3 могут быть дополни- тельно включены резисторы в эмиттерные цепи каждого транзистора. При работе усили- тельных элементов в режиме В резисторы в цепях эмиттеров отсутствуют. Входные на- пряжения u вх1 и u вх2 равны по величине и противоположны по фазе. Трансформатор Т1 обеспечивает получение противофазного напряжения, необходимого для возбуждения оконечного каскада, т.е. является фазоинверсным звеном. При открывании одного транзи- стора другой закрывается, т.е. транзисторы работают поочередно, создавая токи коллекто- ров iк2 и iк3 . Эти токи протекая через первичную обмотку трансформатора Т2 индуциру- ют во вторичной обмотке токи, протекающие через нагрузку во встречных направлениях. Нагрузка Rн подключена к транзисторам через выходной трансформатор со средней точ- кой в первичной обмотке.Для трансформатора Т со средней точкой мгновенные напряжения на входе каждой из плеч при косинусоидальном входном сигнале можно представитьu вх1 = U mвхcos ωt; (6.9)u вх2 = U mвхcos (ωt+π) = — U mвхcos ωt. (6.10)Ток iк2 в коллекторной цепи транзистора VT2 под действием напряжения u вх1 вне зави- симости от режима работы транзистора (А, В, АВ) можно представить разложением в ряд Фурьеiк2  Iср  Im1 cost Im2 cos 2t Im3 cos3t ..... , (6.11)где I ср — среднее значение коллекторного тока, I m1, I m2, I m3, …- амплитуды соответ- ствующих гармоник коллекторного тока (полагая начальные фазы равными нулю). Кол- лекторный токi3 транзистора VT3 с учетом входного воздействия (6.10) представляем разложением в ряд Фурье заменой аргументов ωt на ωt+πiк3  Iср  Im1 cost Im2 cos 2t Im3 cos3t .....(6.12) Поскольку токи iк2 и i3в первичной обмотке трансформатора Т2 протекают встречно, создавая встречный магнитный поток, пропорциональный разности iк2 — i3 , то ток в на- грузке,iн = d ( iк2 — i3 ) (6.13)обусловленный этим потоком,iн d(2Im1 cost 2Im3 cos3t .....) , (6.14)где d – коэффициент пропорциональности содержит только удвоенные нечетные гармони- ки.Из выражений (6.13) и (6.11), (6.12) следует, что четные гармоники компенсируются, не создавая магнитный поток, а, следовательно, напряжение на нагрузке отсутствует.Анализируя соотношение (6.14) можно заметить, что двухтактный каскад обладает ря- дом положительных свойств. компенсация четных гармоник, т.к. они, входя в состав токов плеч каскада, изменя- ются синфазно, взаимно уничтожаясь в нагрузке. отсутствие постоянного тока подмагничивания магнитной цепи выходного транс- форматора, поскольку при отсутствии сигнала через первичную обмотку протекают рав- ные токи iк2 и i3 , создающие равные и противоположные магнитные поля, компенсирую- щие друг друга. Это позволяет уменьшить габариты и стоимость выходного трансформа- тора. относительно небольшая чувствительность к пульсациям питающего напряжения. Это объясняется тем, что токи покоя обоих плеч изменяются одинаково и поэтому их раз- ность оказывается равной нулю. В связи с этим, допускаются пульсации напряжения ис- точников питания для двухтактных схем в 3-5 раз выше, чем для однотактных. отсутствие тока частоты усиливаемого сигнала в цепи источника питания; поскольку суммарный ток, проходящий через источник питания, не содержит составляющей частоты входного воздействия. Это снижает требования к фильтрам на выходе источников пита- ния, упростить развязывающие межкаскадные фильтры.ДвухтактныекаскадыврежимеВДвухтактные каскады в режиме А создают очень малые нелинейные искажения, но при этом обладают относительно низкими энергетическими показателями. Работа АЭ в двух- тактных выходных каскадах в режиме В позволяют получать высокий КПД и малую мощ- ность потерь в транзисторах. Переход АЭ в режим В достигается исключением цепи сме- щения (R3, рис.6.40). Ток покоя в этом режиме равен нулю (практически очень мал), что реализует очень экономичный режим работы выходных АЭ. Транзисторы работают стро- го поочередно,пропуская полуволну в свой полупериод (рис.6.41,а). а) б)Рис.6.41Во второй полупериод он заперт и ток питания не потребляет. В этот полупериод работа- ет другой транзистор. Нагрузочная прямая транзистора одного плеча выходит из исходной РТ А, в которой iк = 0, U к = E. Ее наклон определяется сопротивлением нагрузки по пе- ременному току Rн к. Для схемы (рис.6.40) его величина определяется значением сопро- тивления нагрузки, пересчитанной к первичной полуобмотке трансформатора Т2 (R3= 0):Rн к1 = Rн n2 т1 η т, (6.15)где nт1 = ω 2/0,5ω 1 – коэффициент трансформации одного плеча выходного трансформа- тора, η т – КПД трансформатора. Максимальная мощность, отдаваемая транзисторами Р

Приближенное изображение функциональной зависимости


Лабораторная работа 6

ДВУХТАКТНЫЙ БЕСТРАНСФОРМАТОРНЫЙ УСИЛИТЕЛЬ МОЩНОСТИ


1 Цель работы


Изучение методов построения двухтактных оконечных каскадов усилителей мощности звуковых частот при непосредственной связи с предоконечным каскадом; исследование свойств оконечного каскада с применением компьютерного моделирования и расчет ос- новных энергетических характеристик.


2 Задание




    1. Задание для самостоятельной подготовки


Изучить основные положения курса «Основы схемотехники» о способах построения выходных каскадов стр.169 – 181 [2], стр. 136 — 155 [4], стр. 194 – 210 [5] и письменно ответить на контрольные вопросы.


    1. Экспериментальная часть


      1. Сборка исследуемой схемы.

      2. Определение режимов работы транзисторов по постоянному току.

      3. Расчет АЧХ усилителя и определение коэффициентов усиления

      4. Расчет временных зависимостей (токов и напряжений) в различных точках прин- ципиальной схемы.

      5. Температурная стабилизация режимов транзисторов оконечного каскада.


3 Описание принципиальной схемы исследуемого усилителя


Исследование свойств усилителя мощности проводится примере одной из распростра- ненных схем двухкаскадного бестрансформаторного усилителя с параллельным управ- лением транзисторами двухтактного оконечного каскада (рис.6.1).

Двухтактный оконечный каскад на транзисторах Q1 (КТ817В) и Q2 (КТ816В) управ- ляется однофазным переменным напряжением, снимаемым с коллектора транзистора Q3 (КТ635А). Резистор R10 является сопротивлением нагрузки усилителя, резистор R9 вме- сте с диодами D1, D2 и входным динамическим сопротивлением транзисторов Q1и Q2, а также резистором R10,
является нагрузкой предоконечного каскада на транзисторе Q4. Напряжение смещения на нем обеспечивается резистором R7 (схема питания фиксиро- ванным током базы). Напряжение смещения на транзисторах Q1 и Q2 создается благодаря протеканию постоянной составляющей тока коллектора I ср1 транзистора Q1 через диоды D1 и D2. Одновременно, для стабилизации рабочей точки транзистора Q1 организована, с помощью резистора R9, последовательная ООС по постоянному и переменному напря- жению. Диоды D1,D2 создают небольшое напряжение смещения на транзисторах Q1и Q2 уменьшающее нелинейные искажения и обеспечивабщее температурную стабилизацию точки покоя. Введение ООС позволило уменьшить мощность сигнала, потребляемую ре-

зистором R9, увеличить амплитуду сигнала на входе транзисторов Q1 и Q2 и одновремен- но снизить уровень сигнала на входе транзистора Q3. Такое включение резистора R9 по- зволяет обеспечивать амплитуды напряжений на базах оконечных каскадов близкой по значению к Е/2. Конденсатор С5 является разделительным, исключающим влияние посто- янной составляющей усилителя на параметры источника сигнала. На входе усилителя включен источник гармонического сигнала V5 (GIN). В полупериод, когда открыт верх- ний транзистор, ток протекает через сопротивление нагрузки R10, частично ответвляясь в цепь ООС, заряжая накопительный конденсатор С7. Конденсатор С7 включается после- довательно с источником питания Е и их напряжения вычитаются, поэтому напряжение питания одного плеча равно Е – Ес2 = Е/2. В следующий полупериод входного сигнала работает нижний транзистор Q2 и конденсатор С7 служит для него источником питания

Ес2 = Е/2. При достаточно большой емкости конденсатора С7, напряжение на нем в тече- ние работы Q2 может оставаться практически неизменным.

Рис.6.1


    1.   1   2   3   4   5   6   7   8

Методические указания по выполнению работы




      1. Машинное моделирование


Вводпринципиальнойсхемыусилителямощности

Перед выполнении п.2.2.1. следует загрузить систему схемотехнического проектирования МС9 и вызвать в главное окно (рис.6.2) принципиальную схему двухтактного усилителя (рис.6.1) мощности звуковых частот, находящейся в файле VБтрУНЧ.CIR.

Для этого необходимо выбрать режим (рис.6.2.1) основного меню (рис.6.2), в выпадающем окне выбрать файл C:\MC9DEMO\data\VБтрУНЧ2.1.CIR, вызвав его в основное окно редактора (рис.6.3).

При отсутствии в списке указанного файла необходимо обратиться к схемному файлу, нажав на пиктограмму (рис.6.2.2) в окне схем. В диалоговом окне (рис.6.2.3) обратиться к папке (рис.6.2.4) и, открыв ее, отыскать файл VБтрУНЧ.CIR.

В окне схем указаны основные команды и вспомогательные пиктограммы, позволяющие “собирать” принципиальные или эквивалентные схемы устройств, для последующего анализа по постоянному току, во временной или частотной области и др. Возможности системы схемотехнического моделирования МС9, реализованные в МС8, и, подробно описанные в [1], расширены, дополнены примерами анализа аналоговых и цифровых схем и в некоторых случаях применена другая форма представления моделей компонентов.


Например, библиотека диодов, транзисторов, ОУ в отличие от МС8 теперь сформирована в текстовом файле (рис.6.2.5) в папке (рис.6.2.6).

Рис.6.2



Рис.6.3

После загрузки файла C:\MC9DEMO\data\VБтрУНЧ.CIR, в центральном окне редактора должна появиться (рис.6.4) принципиальная схема бестрансформаторного усилителя мощности (если она была ранее записана в эту папку).

Следует убедиться в соответствии параметров компонентов вызванной схемы и, приведенных в описании.

Если полученные методические материалы не содержат дискету с файлом принцпиальной схемы усилителя, то ее следует ввести самостоятельно, выбрав режим FILE в меню главного окна (рис.6.2), которое представлено командами: File, Edit, Components, Windows, Options, Analysis , Help.



Рис.6.4

Меню File служит для загрузки, создания и сохранения файлов схем, библиотек математических моделей компонентов схем и для вывода схем на принтер. При этом программа автоматически присваивает окну схем некоторый текущий номер (например, circuit2.CIR).

Меню Edit служит для создания электрических схем, их редактирования, а также редактирования символов компонентов схем.

Команда Components главного меню используется для добавления в создаваемую или редактируемую схему компонентов, в дополнение к содержащимся в каталоге МС9 (каталог содержит более 100 аналоговых и цифровых компонентов). Каталог команды Components можно редактировать, создавая новые разделы иерархии и вводить в них