Файл: Лабораторная работа 6 двухтактный бестрансформаторный.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.12.2023

Просмотров: 156

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

1 Цель работы

2 Задание

3 Описание принципиальной схемы исследуемого усилителя

Методические указания по выполнению работы

5 Содержание отчета

Однотактные выходные каскады Различают резисторные, трансформаторные и дроссельные выходные каскады. Резисторные каскады предназначены для усиления высоких уровней напряжения и ши-роко применяются в операционных усилителях, УПТ, балансных и дифференциальных каскадах, широкополосных и импульсных усилителях [2,3].Применение согласующего трансформатора в выходных каскадах позволяет обеспечи- вать оптимальное, с точки зрения согласования с нагрузкой, сопротивление в выходной цепи АЭ. Трансформаторные выходные каскады получили широкое применение в усили- телях многоканальной связи, когда входной и выходной трансформаторы выполняют функцию не только согласующих цепей, но и являются компонентом цепи общей частот- но-зависимой отрицательной ОС.Дроссельный каскад, обладая свойствами во многом схожими с трансформаторным каскадом, при этом не позволяет обеспечивать оптимальное сопротивление нагрузки и по- этому находит ограниченное применение.ТрансформаторныйкаскадВ однотактном выходном каскаде усиление осуществляется одним транзистором (рис.6.39,а), работающем в режиме Аа) б)Рис.6.39Выходной трансформатор Т преобразует сопротивление внешней нагрузки Rн (например, волновое сопротивление коаксиальной линии) в сопротивление коллекторной нагрузки Rн к :Rн к = r 1 + (r 2+ Rн)/n2т , (6.1)где r 1 и r 2 — активные сопротивления первичной и вторичной обмоток трансформатора (сопротивление потерь, которым обычно пренебрегают, т.к. Rн >> r 1 + r 2); nт = ω 1/ω 2 – коэффициент трансформации, где ω 1 и ω 2 – число витков первичной и вторичной обмо- ток трансформатора.Выходной трансформатор одновременно позволяет исключить взаимное влияние на- грузки на режим работы АЭ и, наоборот. Нагрузочная прямая ВС (рис.6.41,б), наклон ко- торой величиной сопротивления Rн к, проходит через точку А, положение которой опреде- ляется режимом в ИРТ (Uкэ0, I к0), задаваемой на нагрузочной прямой по постоянному то- ку. Если сопротивление первичной обмотки трансформатора r 1 = 0, то нагрузочная прямая по постоянному току проходит вертикально через точку А и Uкэ0 = Е. Временные диа- граммы (рис.6.41,б) отражают характер мгновенных значений коллекторного тока и на- пряжения максимально возможной амплитуды при усилении гармонического сигнала. Точки В и С определяют границы используемой нагрузочной прямой при работе транзи- стора в режиме А. Точка В соответствует границе перехода в режим насыщения, а точка С– в режим отсечки. Напряжение в точке В и ток в точке С являются минимальными и на- зываются остаточными (u ост, i ост).Эффективность работы транзистора определяется коэффициентамииспользованиятока и напряжения транзистора i Iкm / Iк0, u Uкm /Uк0, (6.2) где Uкэm, I кm – амплитуда напряжения и тока на коллекторе транзистора (рис.6.41,б) Коэффициентыi и u выбирают исходя из требований получения максимально воз- можной выходной мощности при заданном уровне нелинейных искажений, что ограни- чивает их значения в реальных условиях до величины 0,8 …0,9.Мощность, отдаваемая в эквивалентную нагрузку транзистора в коллекторной цепи, Rн кР = 0,5 Uкэm I кm (6.3)Мощность, потребляемая от источника питанияР0 = 0,5 Uкэ0 I к0 (6.4)При этом КПД каскада будетη = Р/ Р0 = Uкэm I кm/2Е I к0 = 0,5 i u0 , (6.5)где Е – напряжение источника питания, а 0 = U кэ0 /Е – коэффициент использования на- пряжения источника питания.Поскольку 0 <1, u<1, i< 1, а I кm < I к0 , Uкэm < U кэ0< , то КПД каскада всегдаменьше 50%, хотя и выше чем для резисторного каскада. Обычно коэффициенты исполь- зования не стремятся получать наибольшими (равными единице) поскольку вблизи точек В и С работа транзистора сопровождается большими нелинейными искажениями.С учетом КПД трансформатора η т , мощность отдаваемая в реальную нагрузку RнР н = Р·ηт (6.6)Транзистор выбирают по значению мощности, рассеиваемой на коллекторе Р к.макс по ус- ловиюР к.макс  (2,5…3,5) Р (6.7)Поскольку мощность на нагрузке пропорциональна квадрату амплитуды напряжения, то в режиме А (при неизменном среднем токе питания) уменьшение амплитуды напряже- ния на нагрузке приводит к быстрому уменьшению КПД. Кроме того, как показывает (6.5) мощность, выделяемая на коллекторе транзистора Р кР к = Р0 — Р (6.8)будет сильно изменяться при колебаниях уровня входного сигнала.К другим недостаткам трансформаторных каскадов следует отнести большие размеры, массу, стоимость, сравнительно узкую полосу пропускания и невозможность реализации усилителя по интегральной технологии. 1   2   3   4   5   6   7   8

Двухтактные выходные каскады Двухтактными называют каскады, содержащие два усилительных элемента (иногда две группы параллельно соединенных АЭ), работающих на общую нагрузку, а фазы выходных токов которых, противоположны. Отдельно взятый АЭ, с цепями связи и питания, обра- зует плечо двухтактного каскада.В зависимости от способа управления АЭ двухтактные каскады подразделяются на кас- кады: с параллельным управлением однофазным входным напряжением (при использовании в качестве АЭ БТ применяют транзисторы с разным типом проводимости, работающие в режиме В или АВ) с параллельным управлением двухфазным напряжением (применяют однотипные БТ, ра- ботающие в режиме А или АВ) с последовательнымуправлениемоднофазнымнапряжением (применяют однотипные БТ, работающие в режиме А, когда сигнал с выхода первого из них, подается на вход вто- рого). Благодаря отличию фаз выходных токов на π происходит частичная компенсация нели- нейных искажений, вносимых плечами. Использование режима А в выходных каскадах обеспечивает очень малые нелинейные искажения, меньшие чем в однотактной схеме. Транзисторные схемы двухтактных оконечных каскадов, использующих выходной трансформатор, могут выполняться с резисторно-емкостной или с трансформаторной свя- зью с предоконечным каскадом (рис.6.40)Рис.6.40Резисторы R1 и R2 – делитель напряжения питания, обеспечивающий смещение на оба транзистора VT1 и VT2и задающий ток коллектора каждого транзистора I к0 в исходной рабочей точке. Резистор R3 — сопротивление эмиттерной температурной стабилизации. Для выравнивания коллекторных токов плеч вместе с резистором R3 могут быть дополни- тельно включены резисторы в эмиттерные цепи каждого транзистора. При работе усили- тельных элементов в режиме В резисторы в цепях эмиттеров отсутствуют. Входные на- пряжения u вх1 и u вх2 равны по величине и противоположны по фазе. Трансформатор Т1 обеспечивает получение противофазного напряжения, необходимого для возбуждения оконечного каскада, т.е. является фазоинверсным звеном. При открывании одного транзи- стора другой закрывается, т.е. транзисторы работают поочередно, создавая токи коллекто- ров iк2 и iк3 . Эти токи протекая через первичную обмотку трансформатора Т2 индуциру- ют во вторичной обмотке токи, протекающие через нагрузку во встречных направлениях. Нагрузка Rн подключена к транзисторам через выходной трансформатор со средней точ- кой в первичной обмотке.Для трансформатора Т со средней точкой мгновенные напряжения на входе каждой из плеч при косинусоидальном входном сигнале можно представитьu вх1 = U mвхcos ωt; (6.9)u вх2 = U mвхcos (ωt+π) = — U mвхcos ωt. (6.10)Ток iк2 в коллекторной цепи транзистора VT2 под действием напряжения u вх1 вне зави- симости от режима работы транзистора (А, В, АВ) можно представить разложением в ряд Фурьеiк2  Iср  Im1 cost Im2 cos 2t Im3 cos3t ..... , (6.11)где I ср — среднее значение коллекторного тока, I m1, I m2, I m3, …- амплитуды соответ- ствующих гармоник коллекторного тока (полагая начальные фазы равными нулю). Кол- лекторный токi3 транзистора VT3 с учетом входного воздействия (6.10) представляем разложением в ряд Фурье заменой аргументов ωt на ωt+πiк3  Iср  Im1 cost Im2 cos 2t Im3 cos3t .....(6.12) Поскольку токи iк2 и i3в первичной обмотке трансформатора Т2 протекают встречно, создавая встречный магнитный поток, пропорциональный разности iк2 — i3 , то ток в на- грузке,iн = d ( iк2 — i3 ) (6.13)обусловленный этим потоком,iн d(2Im1 cost 2Im3 cos3t .....) , (6.14)где d – коэффициент пропорциональности содержит только удвоенные нечетные гармони- ки.Из выражений (6.13) и (6.11), (6.12) следует, что четные гармоники компенсируются, не создавая магнитный поток, а, следовательно, напряжение на нагрузке отсутствует.Анализируя соотношение (6.14) можно заметить, что двухтактный каскад обладает ря- дом положительных свойств. компенсация четных гармоник, т.к. они, входя в состав токов плеч каскада, изменя- ются синфазно, взаимно уничтожаясь в нагрузке. отсутствие постоянного тока подмагничивания магнитной цепи выходного транс- форматора, поскольку при отсутствии сигнала через первичную обмотку протекают рав- ные токи iк2 и i3 , создающие равные и противоположные магнитные поля, компенсирую- щие друг друга. Это позволяет уменьшить габариты и стоимость выходного трансформа- тора. относительно небольшая чувствительность к пульсациям питающего напряжения. Это объясняется тем, что токи покоя обоих плеч изменяются одинаково и поэтому их раз- ность оказывается равной нулю. В связи с этим, допускаются пульсации напряжения ис- точников питания для двухтактных схем в 3-5 раз выше, чем для однотактных. отсутствие тока частоты усиливаемого сигнала в цепи источника питания; поскольку суммарный ток, проходящий через источник питания, не содержит составляющей частоты входного воздействия. Это снижает требования к фильтрам на выходе источников пита- ния, упростить развязывающие межкаскадные фильтры.ДвухтактныекаскадыврежимеВДвухтактные каскады в режиме А создают очень малые нелинейные искажения, но при этом обладают относительно низкими энергетическими показателями. Работа АЭ в двух- тактных выходных каскадах в режиме В позволяют получать высокий КПД и малую мощ- ность потерь в транзисторах. Переход АЭ в режим В достигается исключением цепи сме- щения (R3, рис.6.40). Ток покоя в этом режиме равен нулю (практически очень мал), что реализует очень экономичный режим работы выходных АЭ. Транзисторы работают стро- го поочередно,пропуская полуволну в свой полупериод (рис.6.41,а). а) б)Рис.6.41Во второй полупериод он заперт и ток питания не потребляет. В этот полупериод работа- ет другой транзистор. Нагрузочная прямая транзистора одного плеча выходит из исходной РТ А, в которой iк = 0, U к = E. Ее наклон определяется сопротивлением нагрузки по пе- ременному току Rн к. Для схемы (рис.6.40) его величина определяется значением сопро- тивления нагрузки, пересчитанной к первичной полуобмотке трансформатора Т2 (R3= 0):Rн к1 = Rн n2 т1 η т, (6.15)где nт1 = ω 2/0,5ω 1 – коэффициент трансформации одного плеча выходного трансформа- тора, η т – КПД трансформатора. Максимальная мощность, отдаваемая транзисторами Р

Приближенное изображение функциональной зависимости

Vaf=50 Ikf=1 Ise=1e-13 Var=210 Ikr=1 Isc=1e-7 Nc=1.5 Rb=0.6 Rbm=0.48 Irb=0.5 Rc=0.15 Cje=1.5e-10

+Vje=0.75 Mje=0.33 Cjc=2.4e-10 Vjc=0.75 Mjc=0.37 Cjs=2e-12 Vjs=0.75 Mjs=0.5 Fc=0.5 Tf=1.56e-9 Xtf=1.5 Vtf=100 Itf=0.5 Tr=5.3e-8 Xtb=2)Is=5.258f Xti=3 Eg=1.11 Vaf=86 Bf=185.1 Ne=7.428 Ise=28.21n Ikf=.4922 Xtb=1.5 Var=25 Br=2.713

+ Nc=2 Isc=21.2p Ikr=.25 Rb=52 Rc=1.65 Cjc=9.921p Vjc=.65 Mjc=.33 Fc=.5 Cje=11.3p

+ Vje=.69 Mje=.33 Tr=57.71n Tf=611.5p Itf=.52 Vtf=80 Xtf=2),
.MODEL KT816B PNP (Is=3.5e-13 Bf=34 Vaf=20 Ikf= 1 Var=210 Ikr=1 Nc=1.5 Rb=1.44 Rbm=1.15 Irb=0.5 Rc=0.33 Cje=1.5e-10 Vje=0.75

+Mje=0.33 Cjc=2.4e-10 Vjc=0.75 Mjc=0.37 Cjs=2e-12 Vjs=0.75 Mjs=0.5 Fc=0.5 Tf=1.56e-9 Xtf=1.5 Vtf=100 Itf=0.5 Tr=5.3e-8 Xtb=2).

Остальные параметры модели транзистора: COST, POWER, SHAPEGROUPE, PACAGE по своему значению соответствуют позициям, представленным в подменю (рис.6.2.9) , и обычно принимаются по умолчанию.
Вводпараметровмоделидиода
Нажатием на пиктограмму (рис.6.2.26) в строке основных компонентов переходим в подменю (рис.6.2.27) (рис.6.7)

Рис.6.7

Название, структура надписей и кнопок и их назначение соответствуют, описанным ранее, при вводе параметров модели транзистора (рис.6.6). Тип диода KD204A выбирают из списка диодов в правом окне при переходе на строку (рис.6.2.28) (если его модель

описана ранее в библиотеке (рис.6.2.29) ) или вводятся заново. Ввод типа диода в рамке (рис.6.2.30) (рис.6.2.3) и других ат

рибутов новой модели начинается после нажатия кнопки
(рис.6.2.31), которые размещаются затем в файле (рис.6.2.32) .

Числовые значения параметров модели диода KD204A вводят в соответствующем окне (указаны на рис.6.7), вместо выведенных на экран монитора. Аббревиатуры и смысл вво- димых параметров диода описаны в [6].
Вводисточникагармоническогосигнала
Для ввода источника гармонического сигнала необходимо, находясь в окне схем (рис.6.8) последовательно активизировать меню Component Analog Primitives Waveform Sources → Sine Source.

В последующем, при работе с этим файлом и повторном обращении к меню Component на закладке Analog Primitives появляется укороченный список компонентов, применявшихся ранее.



Рис.6.8

Находясь в подменю (рис.6.2.33) , описываем модель генератора гармонических сигналов, присваивая обозначение PART V5 и тип модели MODEL Gin. Параметры модели F,A,DC и т.д. вводятся в соответствие с рис.6.8. Список компонентов заносится в текстовый файл после активизации строки MODEL, нажатия кнопки (рис.6.2.31) , присвоения названия модели генератора синусоидальных сигналов на выпа- дающем меню (рис.6.2.33) и заполнения окошек, определяющих па- раметры генератора. Параметры генератора задают, указывая в окне

F — значение частоты генератора гармонических сигналов (в герцах, используется только при анализе во временной области),



А — величину амплитуды сигнала (в вольтах, используется только при анализе во временной области),

DC — значение постоянной составляющей (в вольтах), PH значение начальной фа- зы сигнала градусах) ,

RS величину внутреннего сопротивления источника сигналов (в Омах), RP — пе- риод повторения моделируемого процесса (если процесс затухающий, при указанной ве- личине постоянной времени TAU, сек.),

TAU – постоянная времени затухания переходного процесса. Если параметры гене- ратора были ранее введены, и хранились в текстовом файле

(рис.6.2.34) , то требуемый генератор выбирают активизацией соответствующей строки в правом окне подменю (рис.6.2.33) .

Вводбатареиисточникапитания
Питание схемы ДУ осуществляется от источника ЭДС V4. Величина напряжения ис- точника питания принимается равной 24В. Подключение источника питания (батареи) в схему, как любого другого компонента, происходит после выбора его пиктограммы (рис.6.2.35) в строке главного меню и задания параметров (рис.6.9).



Рис.6.9
Вводсоединительныхлиний
Соединительные линии между элементами схемы “прочерчивают”, используя кноп- ку ввода ортогональных проводников Wire Mode (изображение линии) на панели инст- рументов (рис.6.2).
Удаление(коррекция)компонентовпринципиальнойсхемы
При необходимости коррекции некоторых элементов принципиальной схемы вначале удаляют соответствующий элемент (компонент, линию ), нажав
левой кнопкой мыши стрелку (рис.6.2.36) -“изменение режима “окна главного меню, активизировав режим (Select Mode) редактирования элементов или компонентов схемы (рис.6.2). Затем, поведя курсор к компоненту, нажать левую кнопку мыши. При этом подсвечивается, обычно зе- леным цветом, компонент или соответствующий текст на принципиальной схеме и затем, войдя в меню EDIT, выбирают пиктограмму (рис.6.2.37) CUT и удаляют необходи- мые атрибуты. Возникающие трудности при удалении элементов или вводе новых устра- няются обращении к программе HELP главного меню.



4.2.2 Режимы работы транзисторов по постоянному току

Закончив ввод компонентов принципиальной схемы и, проверив их значение, кото- рое должно соответствовать значениям, указанным на рис.6.2, нажатием на пиктограмму (рис.6.2.38) Node Numbers (номера узлов) в окне схем, расставляют номере узлов в ис- следуемой схеме. Узлы, на которые подаются или с которых снимаются напряжения, за- поминают или записывают и переходят в режим анализа усилителя по постоянному току, последовательно выполнив Analysis Dynamic DC…→ OK. На выпадающем подменю (рис.6.2.39) (рис.6.10)



Рис.6.10

активирована пиктограмма (рис.6.2.40) «Напряжения в узлах», что позволяет рассчи- тывать напряжения для выбранной в строке (рис.6.2.41) температуры 27оС (или списка значений).

Выбор режима Place Text (установка метки) позволяет отображать на экране монитора, одновременно с величиной напряжения в узлах, значения температуры, при которой они определены. Когда, как показано на рис.6.10 активированы пиктограммы (рис.6.2.42), в окне схем появляется табличка с условиями анализа, например, (рис.6.2.43) — результаты анализа схемы на постоянном токе, для температуры 27