Файл: Лабораторная работа 6 двухтактный бестрансформаторный.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.12.2023

Просмотров: 161

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

1 Цель работы

2 Задание

3 Описание принципиальной схемы исследуемого усилителя

Методические указания по выполнению работы

5 Содержание отчета

Однотактные выходные каскады Различают резисторные, трансформаторные и дроссельные выходные каскады. Резисторные каскады предназначены для усиления высоких уровней напряжения и ши-роко применяются в операционных усилителях, УПТ, балансных и дифференциальных каскадах, широкополосных и импульсных усилителях [2,3].Применение согласующего трансформатора в выходных каскадах позволяет обеспечи- вать оптимальное, с точки зрения согласования с нагрузкой, сопротивление в выходной цепи АЭ. Трансформаторные выходные каскады получили широкое применение в усили- телях многоканальной связи, когда входной и выходной трансформаторы выполняют функцию не только согласующих цепей, но и являются компонентом цепи общей частот- но-зависимой отрицательной ОС.Дроссельный каскад, обладая свойствами во многом схожими с трансформаторным каскадом, при этом не позволяет обеспечивать оптимальное сопротивление нагрузки и по- этому находит ограниченное применение.ТрансформаторныйкаскадВ однотактном выходном каскаде усиление осуществляется одним транзистором (рис.6.39,а), работающем в режиме Аа) б)Рис.6.39Выходной трансформатор Т преобразует сопротивление внешней нагрузки Rн (например, волновое сопротивление коаксиальной линии) в сопротивление коллекторной нагрузки Rн к :Rн к = r 1 + (r 2+ Rн)/n2т , (6.1)где r 1 и r 2 — активные сопротивления первичной и вторичной обмоток трансформатора (сопротивление потерь, которым обычно пренебрегают, т.к. Rн >> r 1 + r 2); nт = ω 1/ω 2 – коэффициент трансформации, где ω 1 и ω 2 – число витков первичной и вторичной обмо- ток трансформатора.Выходной трансформатор одновременно позволяет исключить взаимное влияние на- грузки на режим работы АЭ и, наоборот. Нагрузочная прямая ВС (рис.6.41,б), наклон ко- торой величиной сопротивления Rн к, проходит через точку А, положение которой опреде- ляется режимом в ИРТ (Uкэ0, I к0), задаваемой на нагрузочной прямой по постоянному то- ку. Если сопротивление первичной обмотки трансформатора r 1 = 0, то нагрузочная прямая по постоянному току проходит вертикально через точку А и Uкэ0 = Е. Временные диа- граммы (рис.6.41,б) отражают характер мгновенных значений коллекторного тока и на- пряжения максимально возможной амплитуды при усилении гармонического сигнала. Точки В и С определяют границы используемой нагрузочной прямой при работе транзи- стора в режиме А. Точка В соответствует границе перехода в режим насыщения, а точка С– в режим отсечки. Напряжение в точке В и ток в точке С являются минимальными и на- зываются остаточными (u ост, i ост).Эффективность работы транзистора определяется коэффициентамииспользованиятока и напряжения транзистора i Iкm / Iк0, u Uкm /Uк0, (6.2) где Uкэm, I кm – амплитуда напряжения и тока на коллекторе транзистора (рис.6.41,б) Коэффициентыi и u выбирают исходя из требований получения максимально воз- можной выходной мощности при заданном уровне нелинейных искажений, что ограни- чивает их значения в реальных условиях до величины 0,8 …0,9.Мощность, отдаваемая в эквивалентную нагрузку транзистора в коллекторной цепи, Rн кР = 0,5 Uкэm I кm (6.3)Мощность, потребляемая от источника питанияР0 = 0,5 Uкэ0 I к0 (6.4)При этом КПД каскада будетη = Р/ Р0 = Uкэm I кm/2Е I к0 = 0,5 i u0 , (6.5)где Е – напряжение источника питания, а 0 = U кэ0 /Е – коэффициент использования на- пряжения источника питания.Поскольку 0 <1, u<1, i< 1, а I кm < I к0 , Uкэm < U кэ0< , то КПД каскада всегдаменьше 50%, хотя и выше чем для резисторного каскада. Обычно коэффициенты исполь- зования не стремятся получать наибольшими (равными единице) поскольку вблизи точек В и С работа транзистора сопровождается большими нелинейными искажениями.С учетом КПД трансформатора η т , мощность отдаваемая в реальную нагрузку RнР н = Р·ηт (6.6)Транзистор выбирают по значению мощности, рассеиваемой на коллекторе Р к.макс по ус- ловиюР к.макс  (2,5…3,5) Р (6.7)Поскольку мощность на нагрузке пропорциональна квадрату амплитуды напряжения, то в режиме А (при неизменном среднем токе питания) уменьшение амплитуды напряже- ния на нагрузке приводит к быстрому уменьшению КПД. Кроме того, как показывает (6.5) мощность, выделяемая на коллекторе транзистора Р кР к = Р0 — Р (6.8)будет сильно изменяться при колебаниях уровня входного сигнала.К другим недостаткам трансформаторных каскадов следует отнести большие размеры, массу, стоимость, сравнительно узкую полосу пропускания и невозможность реализации усилителя по интегральной технологии. 1   2   3   4   5   6   7   8

Двухтактные выходные каскады Двухтактными называют каскады, содержащие два усилительных элемента (иногда две группы параллельно соединенных АЭ), работающих на общую нагрузку, а фазы выходных токов которых, противоположны. Отдельно взятый АЭ, с цепями связи и питания, обра- зует плечо двухтактного каскада.В зависимости от способа управления АЭ двухтактные каскады подразделяются на кас- кады: с параллельным управлением однофазным входным напряжением (при использовании в качестве АЭ БТ применяют транзисторы с разным типом проводимости, работающие в режиме В или АВ) с параллельным управлением двухфазным напряжением (применяют однотипные БТ, ра- ботающие в режиме А или АВ) с последовательнымуправлениемоднофазнымнапряжением (применяют однотипные БТ, работающие в режиме А, когда сигнал с выхода первого из них, подается на вход вто- рого). Благодаря отличию фаз выходных токов на π происходит частичная компенсация нели- нейных искажений, вносимых плечами. Использование режима А в выходных каскадах обеспечивает очень малые нелинейные искажения, меньшие чем в однотактной схеме. Транзисторные схемы двухтактных оконечных каскадов, использующих выходной трансформатор, могут выполняться с резисторно-емкостной или с трансформаторной свя- зью с предоконечным каскадом (рис.6.40)Рис.6.40Резисторы R1 и R2 – делитель напряжения питания, обеспечивающий смещение на оба транзистора VT1 и VT2и задающий ток коллектора каждого транзистора I к0 в исходной рабочей точке. Резистор R3 — сопротивление эмиттерной температурной стабилизации. Для выравнивания коллекторных токов плеч вместе с резистором R3 могут быть дополни- тельно включены резисторы в эмиттерные цепи каждого транзистора. При работе усили- тельных элементов в режиме В резисторы в цепях эмиттеров отсутствуют. Входные на- пряжения u вх1 и u вх2 равны по величине и противоположны по фазе. Трансформатор Т1 обеспечивает получение противофазного напряжения, необходимого для возбуждения оконечного каскада, т.е. является фазоинверсным звеном. При открывании одного транзи- стора другой закрывается, т.е. транзисторы работают поочередно, создавая токи коллекто- ров iк2 и iк3 . Эти токи протекая через первичную обмотку трансформатора Т2 индуциру- ют во вторичной обмотке токи, протекающие через нагрузку во встречных направлениях. Нагрузка Rн подключена к транзисторам через выходной трансформатор со средней точ- кой в первичной обмотке.Для трансформатора Т со средней точкой мгновенные напряжения на входе каждой из плеч при косинусоидальном входном сигнале можно представитьu вх1 = U mвхcos ωt; (6.9)u вх2 = U mвхcos (ωt+π) = — U mвхcos ωt. (6.10)Ток iк2 в коллекторной цепи транзистора VT2 под действием напряжения u вх1 вне зави- симости от режима работы транзистора (А, В, АВ) можно представить разложением в ряд Фурьеiк2  Iср  Im1 cost Im2 cos 2t Im3 cos3t ..... , (6.11)где I ср — среднее значение коллекторного тока, I m1, I m2, I m3, …- амплитуды соответ- ствующих гармоник коллекторного тока (полагая начальные фазы равными нулю). Кол- лекторный токi3 транзистора VT3 с учетом входного воздействия (6.10) представляем разложением в ряд Фурье заменой аргументов ωt на ωt+πiк3  Iср  Im1 cost Im2 cos 2t Im3 cos3t .....(6.12) Поскольку токи iк2 и i3в первичной обмотке трансформатора Т2 протекают встречно, создавая встречный магнитный поток, пропорциональный разности iк2 — i3 , то ток в на- грузке,iн = d ( iк2 — i3 ) (6.13)обусловленный этим потоком,iн d(2Im1 cost 2Im3 cos3t .....) , (6.14)где d – коэффициент пропорциональности содержит только удвоенные нечетные гармони- ки.Из выражений (6.13) и (6.11), (6.12) следует, что четные гармоники компенсируются, не создавая магнитный поток, а, следовательно, напряжение на нагрузке отсутствует.Анализируя соотношение (6.14) можно заметить, что двухтактный каскад обладает ря- дом положительных свойств. компенсация четных гармоник, т.к. они, входя в состав токов плеч каскада, изменя- ются синфазно, взаимно уничтожаясь в нагрузке. отсутствие постоянного тока подмагничивания магнитной цепи выходного транс- форматора, поскольку при отсутствии сигнала через первичную обмотку протекают рав- ные токи iк2 и i3 , создающие равные и противоположные магнитные поля, компенсирую- щие друг друга. Это позволяет уменьшить габариты и стоимость выходного трансформа- тора. относительно небольшая чувствительность к пульсациям питающего напряжения. Это объясняется тем, что токи покоя обоих плеч изменяются одинаково и поэтому их раз- ность оказывается равной нулю. В связи с этим, допускаются пульсации напряжения ис- точников питания для двухтактных схем в 3-5 раз выше, чем для однотактных. отсутствие тока частоты усиливаемого сигнала в цепи источника питания; поскольку суммарный ток, проходящий через источник питания, не содержит составляющей частоты входного воздействия. Это снижает требования к фильтрам на выходе источников пита- ния, упростить развязывающие межкаскадные фильтры.ДвухтактныекаскадыврежимеВДвухтактные каскады в режиме А создают очень малые нелинейные искажения, но при этом обладают относительно низкими энергетическими показателями. Работа АЭ в двух- тактных выходных каскадах в режиме В позволяют получать высокий КПД и малую мощ- ность потерь в транзисторах. Переход АЭ в режим В достигается исключением цепи сме- щения (R3, рис.6.40). Ток покоя в этом режиме равен нулю (практически очень мал), что реализует очень экономичный режим работы выходных АЭ. Транзисторы работают стро- го поочередно,пропуская полуволну в свой полупериод (рис.6.41,а). а) б)Рис.6.41Во второй полупериод он заперт и ток питания не потребляет. В этот полупериод работа- ет другой транзистор. Нагрузочная прямая транзистора одного плеча выходит из исходной РТ А, в которой iк = 0, U к = E. Ее наклон определяется сопротивлением нагрузки по пе- ременному току Rн к. Для схемы (рис.6.40) его величина определяется значением сопро- тивления нагрузки, пересчитанной к первичной полуобмотке трансформатора Т2 (R3= 0):Rн к1 = Rн n2 т1 η т, (6.15)где nт1 = ω 2/0,5ω 1 – коэффициент трансформации одного плеча выходного трансформа- тора, η т – КПД трансформатора. Максимальная мощность, отдаваемая транзисторами Р

Приближенное изображение функциональной зависимости

новые компоненты (например, транзисторы отечественного производства).

Меню команды Windows позволяет манипулировать открытыми окнами, обеспечивая доступ к редакторам МС9 и калькулятору.

Меню Options используется для настройки параметров программы. Меню Analysis предлагает виды анализа введенной принципиальной схемы.

Меню Help позволяет обратиться к встроенному файлу помощи и оценить, на предлагаемых примерах, возможности программы.

4.1.1 Сборка принципиальной схемы усилителя мощности
Вводрезисторов

Создание принципиальной схемы начинается с выбора курсором компонента принципиальной схемы на строке основных компонентов (рис.6.2) и нажатием левой кнопки мы- ши, например, резистора: (рис.6.2.6а).

Перемещение компонента на экране производится при нажатой левой кнопке, а при необходимости изменить положение компонента, щелкают правой кнопкой при нажатой левой кнопке. При отпускании левой кнопки местоположение компонента фиксируется и
в окне (рис.6.2.7) ниспадающего меню (рис.6.5) появляется название компонента и предложение (рис.6.2.8) присвоить ему позиционное обозначение (например, R15) с возможностью указывать его на принципиальной схеме.

PART предлагаемое позиционное обозначение может быть изменено на любое другое

при активизации указанной строки левой кнопкой мыши.

Рис.6.5

RESISTANCE величина компонента или его
величина и температурный коэффициент (ТС) изменения сопротивления в модели резистора при изменении температуры.

Присвоенное компоненту название, позиционное обозначение и др. и величина будут изображаться в главном окне при вводе принципиальной схемы, если соответствующий параметр будет помечен галочкой SHOW в рамке Name или Value , соответственно. При вводе значения параметров допускается использование масштабных коэффициентов:


Значение

6

10

3

10

-3

10

-6

10

-9

10

-12

10

-15

10

Префикс

MEG

K

M

U

N

P

F

Степ.форма

10E+6

10E+3

10E-3

10E-6

10E-9

10E-12

10E-15


Масштабный коэффициент может содержать и другие дополнительные символы, которые программа игнорирует. То есть величина емкости в 5 пФ может быть введена:

    1. PF или 5 Р или 5Е-12. Дробные значения, например, сопротивления 4,3 кОм, задаются как 4.3к.

В ниспадающем меню (рис.6.2.9) (рис.6.5) так же можно

FREQ вводить информацию о законе изменения сопротивления при изменении частоты

(FREQ, используется при анализе только в частотной области).

MODEL ввести дополнительное нестандартное

обозначение компонента

(например, RMODEL),

COST коэффициент, отражающий стоимость резистора из общей стоимости узла (схемы, устройства).

POWER указать, какая часть мощности (например, 0,7) рассеивается на компоненте, от общей мощности, потребляемой узлом, в соответствие с документом на разработку устройства (техническим заданием),

SHAPEGROUP указывать массив условно графических обозначений (УГО), к которому принадлежит компонент (обычно принимается по умолчанию) и

PACKADE тип корпуса, из ранее введенного списка корпусов (типо-размеров).

Последние из указанных параметров обычно используются в программе PCAD при разработке топологии печатной платы и оценке стоимости устройства (если это предполагается в задании). Подтверждением окончания ввода любого компонента является нажатие кнопки OK. Если какие-либо сведения введены неверно, то нажатие кнопки Cancel, отменяет всю введенную информацию о компоненте.

Другие активированные кнопки подменю (рис.6.2.9) позволяют: (рис.6.2.10) изменять размеры, цвет и шрифт комментариев, при описании атрибутов компонента (обычно применяется по умолчанию),

(рис.6.2.11) добавлять к перечню характеристик компонента (PART, RESIS- TANCE и др.) дополнительные характеристики по желанию пользователя,

(рис.6.2.12) удалять
любую из приведенных характеристик (активируется при размещении курсора не какую-либо строку характеристик в окне компонента),

(рис.6.2.13) отображать в диалоговом режиме способ получения заданного значения ,например, величины сопротивления резистора (принимается по умолчанию).

(рис.6.2.14) выводить на экран монитора УГО компонента,

(рис.6.2.15) переход в файл помощи (комментарии к описанию компонентов и их характеристик в подменю (рис.6.2.9)).

(рис.6.2.16) переход в главное меню файла помощи,

(рис.6.2.17) — отображать в открывающемся диалоговом окне возможность получения выбранной величины, например, величины сопротивления резистора, как эта- лонного.

Строка

(рис.6.2.18)

указывает на вывод на экран дисплея значений токов, мощностей и температуры, при которых они получены. При этом существует возможность коррекции цвета надписей, выводимых на экран. Выбор других режимов позволит помечать точкой концы, вводимого в схеме компонента (рис.6.2.19), присваивать им названия (рис.6.2.20) или номера (рис.6.2.21) .

Активизация (по умолчанию) режима

(рис.6.2.22) — реализует возможность включения в процесс моделирования выбранного компонента,


(рис.6.2.23) обеспечивает подсветку компонента
Вводпараметровмоделитранзистора

Транзистор типа NPN, который выбирается пиктограммой (рис.6.2.24) на второй строчке главного меню, устанавливается в схему, как описывалось ранее для резистора, и затем, на ниспадающем меню NPN:NPN Transistor (рис.6.6), выбираются:

PART позиционное обозначение компонента (Q1),

VALUE характеристика, определяющая его активный режим (может пропускаться),

MODEL используемый транзистор 2Т653А.

Рис.6.6

Если параметры транзистора были ранее введены в библиотеку, то программа обращается к файлу (рис.6.2.25) и они высвечиваются в окнах параметров транзистора.

При отсутствии в списке, предлагаемом в активированном окне справа, транзистора

2Т653А, параметры модели транзистора [6] необходимо ввести в подсвеченных окнах

(рис.6.2.25) , вме- сто параметров, представленных в окнах, предварительно нажав кнопку New (рис.6.6):
.MODEL 2T653A NPN (Is=6.0e-14 Bf=75 Vaf=90 Var=100 Ikr=0.2 Isc=6.0e-13 Rb=5.0 Rbm=3.5 Irb=0.5 Rc=0.1 Cje=4.8e-11 Vje=0.75 Mje=0.33

+Cjc=3.8e-11 Vjc=0.75 Mjc=0.33 Cjs=2.0e-14 Vjs=0.75 Mjs=0.33 Fc=0.5 Tf=1.2e-09 Xtf=1.5 Vtf=60 Itf=0.3 Tr=3.2e-8 Xtb=1.5)

Аналогично вводят параметры моделей транзисторов КТ817В и КТ816В, являющиеся комплементарной парой
.MODEL KT817B NPN (Is=3.5e-13 Bf=34