Файл: Чумадеева Анастасия Владимировна, Учитель с. Пришиб, 2020 год пояснительная записка Данная рабочая программа.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.12.2023

Просмотров: 52

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске.

Истоки теории вероятностей: страховое дело, азартныеигры. П. Ферма и Б. Паскаль. Я. Бернулли. А. Н. Колмогоров.

Содержание курса алгебры в 7 классе.

1. Выражения, тождества, уравнения. Числовые выражения с переменными. Простейшие преобразования выражений. Уравнение, корень уравнения. Линейное уравнений с одной переменной. Решение текстовых задач методом составления уравнений. Статистические характеристики.

2. Функции. Функция, область определения функции. Вычисление значений функции по формуле. График функции. Прямая пропорциональность и ее график. Линейная функция и ее график.

3. Степень с натуральным показателем. Степень с натуральным показателем и ее свойства. Одночлен. Функции у = и их графики.

4. Многочлены. Многочлен. Сложение, вычитание и умножение многочленовРазложение многочленов на множители.

5. Формулы сокращенного умножения. Формулы Применение формул сокращенного умножения в преобразовании выражений.

6. Системы линейных уравнений. Система уравнений. Решение системы двух линейных уравнений с двумя переменными и его геометрическая интерпретация. Решение текстовых задач методом составления систем уравнений.

7. Повторение.

Содержание курса алгебры в 8 классе.

1. Рациональные дроби. Рациональная дробь. Основное свойство дроби, сокращение дробей. Тождественные преобразования рациональных выражений. Функция у = и ее график.

2. Квадратные корни. Понятие об иррациональных числах. Общие сведения о действительных числах. Квадратный корень. Понятие о нахождении приближенного значения квадратного корня. Свойства квадратных корней. Преобразования выражений, содержащих квадратные корни. Функция у = , ее свойства и график.

3. Квадратные уравнения. Квадратное уравнение. Формула корней квадратного уравнения. Решение рациональных уравнений. Решение задач, приводящих к квадратным уравнениям и простейшим рациональным уравнениям.

4. Неравенства. Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Погрешность и точность приближение. Линейные неравенства с одной переменной и их системы.


5. Степень с целым показателем. Элементы статистики. Степень с целым показателем и ее свойства. Стандартный вид числа. Начальные сведения об организации статистических исследований.

6. Повторение.

Содержание курса алгебры в 9 классе.

1. Свойства функций. Квадратичная функция. Функция. Свойства функций. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Функция у = , ее свойства и график. Степенная функция.

2. Уравнения и неравенства с одной переменной. Целые уравнения. Дробные рациональные уравнения. Неравенства второй степени с одной переменной. Метод интервалов.

3. Уравнения и неравенства с двумя переменными. Уравнение с двумя переменными и его график. Системы уравнений второй степени. Решение задач с помощью систем уравнений второй степени. Неравенства с двумя переменными и их системы.

4. Прогрессии. Арифметическая и геометрическая прогрессии. Формула n – го члена и суммы первых n членов прогрессии. Бесконечно убывающая геометрическая прогрессия.

5. Элементы комбинаторики и теории вероятностей. Комбинаторное правило умножения. Перестановки, размещения, сочетания. Относительная частота и вероятность случайного события.


  1. Планируемые результаты изучения курса алгебры в 7-9 классах

РАЦИОНАЛЬНЫЕ ЧИСЛА

Выпускник научится:

1) понимать особенности десятичной системы счисления;

2) владеть понятиями, связанными с делимостью натуральных чисел;

3) выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;

4) сравнивать и упорядочивать рациональные числа;

5) выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применять калькулятор;

6) использовать понятия и умения, связанные с пропорциональностью величин, процентами в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты.

Выпускник получит возможность:

7) познакомиться с позиционными системами счисления с основаниями, отличными от 10;

8) углубить и развить представления о натуральных числах и свойствах делимости;

9) научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.

ДЕЙСТВИТЕЛЬНЫЕ ЧИСЛА

Выпускник научится:

1) использовать начальные представления о множестве действительных чисел;



2) владеть понятием квадратного корня, применять его в вычислениях.

Выпускник получит возможность:

3) развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в человеческой практике;

4) развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).

ИЗМЕРЕНИЯ, ПРИБЛИЖЕНИЯ, ОЦЕНКИ

Выпускник научится:

1) использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.

Выпускник получит возможность:

2) понять, что числовые данные, которые используютсядля характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;

3) понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.

АЛГЕБРАИЧЕСКИЕ ВЫРАЖЕНИЯ

Выпускник научится:

1) владеть понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;

2) выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;

3) выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;

4) выполнять разложение многочленов на множители.

Выпускник получит возможность:

5) научиться выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;

6) применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наименьшего значения выражения).

УРАВНЕНИЯ

Выпускник научится:

1) решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;

2) понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;

3) применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.

Выпускник получит возможность:

4) овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики
, смежных предметов, практики;

5) применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.

НЕРАВЕНСТВА

Выпускник научится:

1) понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;

2) решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;

3) применять аппарат неравенств для решения задач из различных разделов курса.

Выпускник получит возможность научиться:

4) разнообразным приёмам доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики;

5) применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.

ОСНОВНЫЕ ПОНЯТИЯ. ЧИСЛОВЫЕ ФУНКЦИИ

Выпускник научится:

1) понимать и использовать функциональные понятия и язык (термины, символические обозначения);

2) строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;

3) понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.

Выпускник получит возможность научиться:

4) проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.);

5) использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.

ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ

Выпускник научится:

1) понимать и использовать язык последовательностей (термины, символические обозначения);

2) применять формулы, связанные с арифметической и геометрической прогрессиями, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числес контекстом из реальной жизни.

Выпускник получит возможность научиться:

3) решать комбинированные задачи с применением формул n-го члена и суммы первых n членов арифметической и геометрической прогрессий, применяя при этом аппарат уравнений и неравенств;

4) понимать арифметическую и геометрическую прогрессии как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую — с экспоненциальным ростом.


ОПИСАТЕЛЬНАЯ СТАТИСТИКА

Выпускник научится использовать простейшие способы представления и анализа статистических данных.

Выпускник получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы.

СЛУЧАЙНЫЕ СОБЫТИЯ И ВЕРОЯТНОСТЬ

Выпускник научится находить относительную частоту и вероятность случайного события.

Выпускник получит возможность приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов.

КОМБИНАТОРИКА

Выпускник научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Выпускник получит возможность научиться некоторым специальным приёмам решения комбинаторных задач.


  1. Нормы оценки знаний, умений и навыков обучающихся


Оценка письменных контрольных работ, обучающихся по математике.

Ответ оценивается отметкой «5», если:

  • работа выполнена полностью;

  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;

  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

  • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  • допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.