ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 09.01.2024
Просмотров: 474
Скачиваний: 4
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
http://statistica.narod.ru/ind/ms_tv.doc http://statistica.narod.ru/ind/ms_tv.exe
Задачи к теме 1
1.1. Во многих странах водительское удостоверение (автомобильные права) имеет шифр, состоящий из 3 букв и 3 цифр. Чему равно общее число возможных номеров водительских удостоверений, считая, что число букв русского алфавита, используемых для составления шифра, — 26, а буквы занимают первые 3 позиции шифра? Если шифр состоит только из 6 цифр, то чему в этом случае равно общее число всех возможных номеров удостоверений, если: а) цифры в шифре не повторяются; б) повторяются?
1.2. Сколько существует способов составления в случайном порядке списка из 7 кандидатов для выбора на руководящую должность? Какова вероятность того, что кандидаты будут расставлены в списке по возрасту (от меньшего к большему)?
1.3. Руководство фирмы выделило отделу рекламы средства для помещения в печати объявлений о предлагаемых фирмой товарах и услугах. По расчетам отдела рекламы выделенных средств хватит для того, чтобы поместить объявления только в 15 из 25 городских газет. Сколько существует способов случайного отбора газет для помещения объявлений? Какова вероятность того, что в число отобранных попадут 15 газет, имеющих наибольший тираж?*
1.4. Менеджер рассматривает кандидатуры 8 человек, подавших заявления о приеме на работу. Сколько существует способов приглашения кандидатов на собеседование в случайном порядке? Какова вероятность того, что они случайно будут приглашены на собеседование в зависимости от времени их прихода в офис?*
1.5. На железнодорожной станции имеется 5 путей. Сколькими способами можно расставить на них 3 состава? Какова вероятность того, что составы случайно будут расставлены на путях в порядке возрастания их номеров?*
1.6. Покупая карточку лотереи «Спортлото», игрок должен зачеркнуть 6 из 49 возможных чисел от 1 до 49. Если при розыгрыше тиража лотереи он угадает все 6 чисел, то имеет шанс выиграть значительную сумму денег. Сколько возможных комбинаций можно составить из 49 по 6, если порядок чисел безразличен? Чему равна вероятность угадать все 6 номеров?*
1.7. Четыре человека случайно отбираются из 10 согласившихся участвовать в интервью для выяснения их отношения к продукции фирмы по производству продуктов питания. Эти 4 человека прикрепляются к 4 интервьюерам. Сколько существует различных способов составления таких групп? Если выбор случаен, чему равна вероятность прикрепления определенного человека к интервьюеру?*
1.8. Сколькими способами можно рассадить 5 гостей за круглым столом? Какова вероятность того, что гости случайно окажутся рассаженными по росту?*
1.9. Девять запечатанных пакетов с предложениями цены на аренду участков для бурения нефтяных скважин поступили утром в специальное агентство утренней почтой. Сколько существует различных способов очередности вскрытия конвертов с предложениями цены? Какова вероятность того, что конверты случайно окажутся вскрытыми в зависимости от величины предлагаемой за аренду участков цены?*
1.10. Фирма нуждается в организации 4 новых складов. Ее сотрудники подобрали 8 подходящих одинаково удобных помещений. Сколько существует способов отбора 4 помещений из 8 в случайном порядке? Какова вероятность того, что в число отобранных попадут 4 помещения, расположенные в многоэтажных зданиях?*
1.11. Для разгрузки поступивших товаров менеджеру требуется выделить 6 из 20 имеющихся рабочих. Сколькими способами можно это сделать, осуществляя отбор в случайном порядке? Какова вероятность того, что в число отобранных войдут самые высокие рабочие?*
1.12. Руководство фирмы может обратиться в 6 туристических агентств с просьбой об организации для своих сотрудников 3 различных туристических поездок. Сколько существует способов распределения 3 заявок между 6 агентствами, если каждое агентство может получить не более одной заявки? Какова вероятность того, что заявки получат агентства с наибольшим оборотом, причем, чем крупнее агентство, тем крупнее заявку оно получает?*
1.13. Для доступа в компьютерную сеть оператору необходимо набрать пароль из 4 цифр. Оператор забыл или не знает необходимого кода. Сколько всевозможных комбинаций он может составить для набора пароля: а) если цифры в коде не повторяются; б) если повторяются? С какой вероятностью можно открыть замок с первой попытки?*
1.14. Сколько существует способов составления списка 20 деловых звонков случайным образом? Какова вероятность того, что список окажется составленным в алфавитном порядке?*
1.15. На рынке представлено 8 различных пакетов программ для бухгалтерии с приблизительно равными возможностями. Для апробации в своих филиалах фирма решила отобрать 3 из них. Сколько существует способов отбора 3 программ из 8, если отбор осуществлен в случайном порядке? Какова вероятность того, что среди отобранных случайно окажутся 3 программы, занимающие наименьший объем памяти?*
1.16. Выделены крупные суммы на выполнение 4 крупных правительственных программ, сулящих исполнителям высокую прибыль. Сколько существует способов случайного распределения этих 4 программ между 6 возможными исполнителями? Какова вероятность того, что средства на выполнение программ при таком распределении получат 4 исполнителя, имеющие наибольшую прибыль, причем величина выделяемых средств зависит от величины прибыли исполнителей?*
1.17. Брокерская фирма предлагает акции различных компаний. Акции 10 из них продаются по наименьшей среди имеющихся акций цене и обладают одинаковой доходностью. Клиент собирается приобрести акции 3 таких компаний — по 1 от каждой компании. Сколько существует способов выбора 3 таких акций из 10, если выбор осуществляется в случайном порядке? Какова вероятность того, что в число случайно отобранных попадут акции, рост цен на которые будет наибольшим в следующем году?*
1.18. Фирмы F1, F2, FЗ, F4, F5 предлагают свои условия по выполнению 3 различных контрактов С1, С2 и СЗ. Любая фирма может получить только один контракт. Контракты различны, т. е. если фирма F1 получит контракт С1, то это не то же самое, если она получит контракт С2. Сколько способов получения контрактов имеют фирмы? Если предположить равновозможность заключения контрактов, чему равна вероятность того, что фирма FЗ получит контракт?*
1.19. По сведениям геологоразведки 1 из 15 участков земли по всей вероятности содержит нефть. Однако компания имеет средства для бурения только 8 скважин. Сколько способов отбора 8 различных скважин у компании? Какова вероятность того, что случайно отобранные для бурения участки окажутся, например, самыми северными?*
1.20. На 9 вакантных мест по определенной специальности претендуют 15 безработных, состоящих на учете в службе занятости. Сколько возможно комбинаций выбора 9 из 15 безработных?
Задачи к теме 2
2.1. Анализ работы кредитного отдела банка выявил, что 12% фирм, бравших кредит в банке, обанкротились и не вернут кредиты по крайней мере в течение 5 лет. Также известно, что обанкротились 20% кредитовавшихся в банке фирм. Если один из клиентов банка обанкротился, то чему равна вероятность того, что он окажется не в состоянии вернуть долг банку?
2.2. Модельер, разрабатывающий новую коллекцию одежды к весеннему сезону, создает модели в зеленой, черной и красной цветовой гамме. Вероятность того, что зеленый цвет будет в моде весной, модельер оценивает в 0,3, что черный — в 0,2, а вероятность того, что будет моден красный цвет — в 0,15. Предполагая, что цвета выбираются независимо друг от друга, оцените вероятность того, что цветовое решение коллекции будет удачным хотя бы по одному из выбранных цветов.
2.3. Вероятность того, что потребитель увидит рекламу определенного продукта по каждому из 3 центральных телевизионных каналов, равна 0,05. Предполагается, что эти события — независимы в совокупности. Чему равна вероятность того, что потребитель увидит рекламу: а) по всем 3 каналам; б) хотя бы по 1 из этих каналов?
2.4. Торговый агент предлагает клиентам иллюстрированную книгу. Из предыдущего опыта ему известно, что в среднем 1 из 65 клиентов, которым он предлагает книгу, покупает ее. В течение некоторого промежутка времени он предложил книгу 20 клиентам. Чему равна вероятность того, что он продаст им хотя бы 1 книгу? Прокомментируйте предположения, которые вы использовали при решении задачи.
2.5. В налоговом управлении работает 120 сотрудников, занимающих различные должности.
Все сотрудники | Руководители | Рядовые сотрудники | Итого |
Мужчины | 29 | 67 | 96 |
Женщины | 4 | 20 | 24 |
Итого | 33 | 87 | 120 |
На профсоюзном собрании женщины заявили о дискриминации при выдвижении на руководящие должности. Правы ли они?
2.6. В фирме 550 работников, 380 из них имеют высшее образование, а 412 — среднее специальное образование, у 357 высшее и среднее специальное образование. Чему равна вероятность того, что случайно выбранный работник имеет или среднее специальное, или высшее образование, или и то и другое?
2.7. Финансовый аналитик предполагает, что если норма (ставка) процента упадет за определенный период, то вероятность того, что рынок акций будет расти в это же время, равна 0,80. Аналитик также считает, что норма процента может упасть за этот же период с вероятностью 0,40. Используя полученную информацию, определите вероятность того, что рынок акций будет расти, а норма процента падать в течение обсуждаемого периода.
2.8. Вероятность для компании, занимающейся строительством терминалов для аэропортов, получить контракт в стране А равна 0,4, вероятность выиграть его в стране В равна 0,3. Вероятность того, что контракты будут заключены и в стране А, и в стране В, равна 0,12. Чему равна вероятность того, что компания получит контракт хотя бы в одной стране?
2.9. Город имеет 3 независимых резервных источника электроэнергии для использования в случае аварийного отключения постоянного источника электроэнергии. Вероятность того, что любой из 3 резервных источников будет доступен при отключении постоянного источника, составляет 0,8. Какова вероятность того, что не произойдет аварийное отключение электроэнергии, если выйдет из строя постоянный источник?
2.10. Покупатель может приобрести акции 2 компаний А и В. Надежность 1-й оценивается экспертами на уровне 90%, а 2-й - 80%. Чему равна вероятность того, что: а) обе компании в течение года не станут банкротами; б) наступит хотя бы одно банкротство?
2.11. Стандарт заполнения счетов, установленный фирмой, предполагает, что не более 5% счетов будут заполняться с ошибками. Время от времени компания проводит случайную выборку счетов для проверки правильности их заполнения. Исходя из того, что допустимый уровень ошибок - 5% и 10 счетов отобраны в случайном порядке, чему равна вероятность того, что среди них нет ошибок?
2.12. На сахарном заводе один из цехов производит рафинад. Контроль качества обнаружил, что 1 из 100 кусочков сахара разбит. Если вы случайным образом извлекаете 2 кусочка сахара, чему равна вероятность того, что, по крайней мере, 1 из них будет разбит? Предполагаем независимость событий, это предположение справедливо вследствие случайности отбора.