Файл: Кластер с014 п графические задачи, кластеры Кинематика вращательного движения твердого тела. П ( 15 шт).docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 09.01.2024

Просмотров: 1028

Скачиваний: 5

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Кластер с014 П Графические задачи, кластеры Кинематика вращательного движения твердого тела.П ( 15 шт)

Сингл S014 П Кинематика вращательного движения твердого тела. Аналитические задачи, П (s014, 15 шт)

v211 –П Электрическое поле, закон Кулона, напряженность электрического поля

v214 П Электрическое поле. Потенциал, работа, связь напряженности и разности потенциалов

v217.Электроемкость П. Конденсаторы, Энергия ЭП

31 П Магнитное поле. Графическое изображение полей. Индукция МП

v234 П Магнитное поле. Сила Ампера, сила Лоренца

V024 Работа силы. Мощность.Механическая энергия. З.С.Э.

v221 Законы постоянного тока П (закон Ома для полной цепи. Работа и мощность тока)

v231 П Магнитное поле. Графическое изображение полей. Индукция МП

v234 П Магнитное поле. Сила Ампера, сила Лоренца

v011 Кинематика поступательного движения м. т. в пространстве.

Кластер с011(П, 20 шт Графические задачи,)

СИнгл 011 Аналитические задачи. П (s011, 15 шт)

Кластер с014 П Графические задачи, кластеры Кинематика вращательного движения твердого тела.П ( 15 шт)

Сингл S014 П Кинематика вращательного движения твердого тела. Аналитические задачи, П (s014, 15 шт)

v241П Электромагнитная индукция. Закон Фарадея

Магнитное поле.

Сила Ампера, сила Лоренца



:3

12. [Уд] (ВО1) В колебательном контуре совершаются затухающие электромагнитные колебания, полная энергия может быть представлена графиком…

1) а

2) б

3) в

4) г

:3
Дисциплина: Физика

V254 – П Электромагнитные волны.

S254 – П Электромагнитные волны. – 9 заданий
1. [Уд] (ВО1) Радиопередатчик излучает ЭМВ с длиной .Чтобы контур радиопередатчика излучал ЭМВ с длиной /2, электроемкость конденсатора в контуре C контура необходимо … раза.

1) уменьшить в 4

2) увеличить в 4

3) увеличить в 2

4) уменьшить в 2

:1

2. [Уд] (ВО1) Длина излучаемых антенной радиостанции электромагнитных волн равна 15 м. Радиостанция работает на частоте … МГц.

1) 10

2) 15

3) 20

4) 25

:3

3. [Уд] (ВО1) Абсолютный показатель преломления данной среды равен 1,33. Электромагнитная волна распространяется в некоторой среде со скоростью … м/c.

1) 2,25·108

2) 2,5·108

3) 2,75·108

4) 3,0·108

:1

4. [Уд] (ВО1) В электромагнитной волне, распространяющейся в вакууме со скоростью , происходят колебания векторов напряженности электрического поля и индукции магнитного поля . При этих колебаниях векторы , , имеют взаимную ориентацию

1) ║ , ║ , ║

2) , ║ , ║

3) ║ , ,

4) , ,

:4

5. [Уд] (ВО1) При переходе электромагнитной волны из одной среды в другую изменяются … волны.

1) частота и скорость распространения

2) период и амплитуда

3) скорость и длина

4) частота и длина

:3

6. [Уд] (ВО1) В вакууме распространяется плоская электромагнитная волна, амплитуда электрической составляющей которой равна Еm = 50 мВ/м. Максимальное значение напряженности магнитного поля … мкА/м.

1) 103,5

2) 132,7

3) 35,8

4) 78,9

:2

7. [Уд] (ВО1) Радиостанция работает на частоте 500 кГц. В некоторый момент времени в точке А электрическое поле электромагнитной волны равно нулю, ближайшая к ней точка В, в которой величина магнитного поля волны принимает максимальное значение, находится на расстоянии … м.

1) 0

2) 150

3) 300

4) 600

:2

8. [Уд] (ВО1) Длина электромагнитной волны, распространяющейся в некоторой среде составляет  = 4 м. Магнитная и диэлектрическая проницаемости среды соответственно равны: μ = 1, ε = 9. Период колебаний ЭМВ равен … c.

1) 8·10-8

2) 6·10-8

3) 4·10-8

4) 2·10-8

:3

9. [Уд] (ВО1) При уменьшении в 2 раза амплитуды колебаний векторов напряженности электрического и магнитного полей плотность потока энергии


1) уменьшится в 2 раза

2) останется неизменной

3) уменьшится в 4 раза

3) увеличится в 4 раза

:3

C254 – П Электромагнитные волны (графики). – 5 заданий
1 . [Уд] (ВО1) В вакууме в положительном направлении оси 0у распространяется плоская электромагнитная волна. На рисунке приведен график зависимости проекции Вх на ось 0х индукции магнитного поля волны от координаты у в произвольный момент времени t. Период Т волны равен … c.

1) 8·10-8

2) 6·10-8

3) 4·10-8

4) 2·10-8

:4

2 . [Уд] (ВО1) На рисунке показана ориентация векторов напряженности электрического ( ) и магнитного ( ) полей в электромагнитной волне. Вектор плотности потока энергии электромагнитного поля ориентирован в направлении

1) 3

2) 2

3) 1

4) 4

:4

3 . [Уд] (ВО1) На рисунке показана ориентация векторов напряженности электрического ( ) и магнитного ( ) полей в электромагнитной волне. Вектор плотности потока энергии электромагнитного поля ориентирован в направлении

1) 2

2) 4

3) 1

4) 3

:1

4 . [Уд] (ВО1) На рисунке представлена мгновенная фотография электрической составляющей электромагнитной волны, переходящей из среды 1 в среду 2 перпендикулярно границе раздела сред АВ. Отношение скорости света в среде 2 к его скорости в среде 1 равно

1) 0,67

2) 1,5

3) 0,84

4) 1,75

:1
5 . [Уд] (ВО1) На рисунке представлена мгновенная фотография электрической составляющей электромагнитной волны, переходящей из среды 1 в среду 2 перпендикулярно границе раздела сред АВ. Относительный показатель преломления среды 2 относительно среды 1 равен

1) 1,75

2) 0,67

3) 1,00

4) 1,5

:4

Дисциплина: Физика

Индекс темы 310 «Волновая оптика»

Вариация v314 Интерференция и дифракция световых волн

Контроль: П - промежуточный

П С314 Кластер (Интерференция света) 19 заданий

1. [Уд] (ВО1) Оптическая разность хода двух волн L12, прошедших расстояние r1 в среде с показателем преломления n1 , и расстояние r2 в среде с показателем преломления n2 , равна

1) r1 r2

2) (r1r2) (n1n2)

3) –

4) r1n1r2n2

:4

2. [Уд] (ВО1) Две когерентные световые волны, приходящие в некоторую точку, максимально усиливают друг друга, если для разности фаз выполняется следующее условие

1)

2)

3)

4)

:3

3. [Уд] (ВО1) Две когерентные световые волны, приходящие в некоторую точку, максимально ослабляют друг друга, если для разности фаз выполняется следующее условие



1)

2)

3)

4)

:1

4. [Уд] (ВО1) Условие интерференционного максимума можно записать следующим образом –

1)

2) d

3)

4)

:3

5. [Уд] (ВО1) Условие интерференционного минимума можно записать следующим образом

1)

2) d

3)

4)

:4

6. [Уд] (ВО1) Для наблюдения линий равного наклона в монохроматическом свете должна быть переменной величиной

1) толщина пленки

2) показатель преломления пленки

3) угол падения световых лучей

4) интенсивность падающего света

:3

7. [Уд] (ВО1) Н а рисунке приведена схема установки для наблюдения колец Ньютона (линза большого радиуса кривизны и стеклянная пластинка расположены в воздухе). Кольца Ньютона в отраженном свете можно наблюдать при интерференции световых волн, номера которых

1) 1 и 2

2) 2 и 3

3) 3 и 4

4) 1 и 4

:2

8. [Уд] (ВО1) Оптическая разность хода двух волн, прошедших одинаковое расстояние L, если одна распространялась в вакууме, а другая – в среде с показателем преломления n, равна

1) 0

2) L(n-1)

3) Ln

4) 

:2

9. [Уд] (ВО1) С ветовая волна из воздуха падает на плоскопараллельную стеклянную пластину толщиной d и показателем преломления n1, лежащую на столе с показателем преломления n2 (см. рисунок). Если n1<n2 , то оптическая разность хода 21 волн 2 и 1, отраженных от нижней и верхней граней пластинки определяется выражением

1) 21 = 2d(n2n1)

2) 21 = 2dn1 + /2

3) 21 = dn1

4) 21 = 2dn1

:4

10. [Уд] (ВО1) В данную точку пространства пришли две световые волны с одинаковым направлением колебаний вектора , периодами Т1 и Т2 и начальными фазами φ1 и φ2. Интерференция наблюдается в случае

1) Т1 = 2 с; Т2 = 2с; φ1 – φ2 = const

2) T1 = 2 c; Т2 = 4 с;φ1 – φ2 = const

3) Т1 = 2 с; Т2 = 2с; φ1 – φ2 const

4) T1 = 2 c; Т2 = 4 с; φ1 – φ2 const

:1

11. [Уд] (ВО1) Тонкая пленка, освещенная белым светом, вследствие явления интерференции в отраженном свете имеет зеленый цвет. При уменьшении толщины пленки ее цвет

1) не изменится

2) станет красным

3) станет синим

:3

12. [Уд] (ВО1) Интерферируют две одинаково поляризованных волны с одинаковыми интенсивностями
I и разностью фаз  = 0. Результирующая интенсивность будет равна

1) 7I

2) 4I

3) 1,3I

4) 2I

:2

13. [Уд] (ВО1) Интерферируют две одинаково поляризованных волны с одинаковыми интенсивностями I и разностью фаз  = . Результирующая интенсивность будет равна

1) 7I

2) 4I

3) 0

4) 2I

:3

14. [Уд] (ВО1) На плоскопараллельную стеклянную пластинку падает световая волна (см. рисунок). Волны 1 и 2, отраженные от верхней и нижней граней пластинки, интерферируют. Для показателей преломления сред выполняется соотношение: n1 < n2 < n3. В этом случае оптическая разность хода 21 волн 1 и 2 равна

1) AD·n1

2) (AB + BCn2

3) (AB + BCn2 AD·n1

4) (AB + BCn2 AD·n1 + λ/2

:3

15. [Уд] (ВО1) На пути луча, идущего в воздухе, поставили стеклянную пластинку толщиной d= 3 мм так, что луч падает на пластинку нормально. Показатель преломления стекла n = 1,5. Оптическая длина пути луча при этом…

1) уменьшилась на 2 мм

2) увеличилась на 2 мм

3) уменьшилась на 4,5 мм

4) увеличилась на 4,5 мм

:4

1 6. [Уд] (ВО1) Световая волна из воздуха падает на плоскопараллельную стеклянную пластину толщиной d и показателем преломления n1, лежащую на столе с показателем преломления n2 (см. рисунок). Если n1<n2 , то лучи 2 и 1, отраженные от нижней и верхней граней пластинки, усиливают друг друга в случае, представленном под номером

1) 2d(n2 – n1)=m

2) 2dn1 + /2=(2m+1)/2

3) 2dn1=2m/2

4) 2dn1 + /2=2m/2

: 3

1 7. [Уд] (ВО1) На плоскопараллельную стеклянную пластинку падает световая волна (см. рисунок). Волны 1 и 2, отраженные от верхней и нижней граней пластинки, интерферируют. Для показателей преломления сред выполняется соотношение: n123. Волны 1 и 2 гасят друг друга в случае, представленном под номером…

1) (AB+BC)n2 -ADn1=(2m+1)/2

2) ADn1=2m/2

3) (AB+BC)n2 -ADn1+/2=(2m+1)/2

4) (AB+BC)n2=2m/2

: 1

1 8. [Уд] (ВО1) Свет падает на тонкую пленку с показателем преломления n, большим, чем показатель преломления окружающей среды. Разность хода лучей на выходе из тонкой пленки равна …

1) ВС+СD+BM +/2

2) (BC+CD)n – BM /2

3) BC + CD – BM

4) (BC + CD)n - BM
1   ...   11   12   13   14   15   16   17   18   ...   21


: 4

19. [Уд] (ВО1) При интерференции света в тонкой пленке для наблюдения полос равной толщины должна быть переменной

1) длина световой волны

2) угол падения световой волны

3) толщина пленки

4) интенсивность падающей световой волны

:3

Контроль: П - промежуточный

П S314 Сингл ( Дифракция ) 17 заданий

1. [Уд] (ВО1) Н а пути сферической световой волны поставлена зонная пластинка (З.П.), которая перекрывает свет от нечетных зон Френеля. По сравнению с полностью открытым фронтом волны интенсивность света в точке наблюдения Р

1) станет равной нулю

2) не изменится

3) значительно уменьшится

4) значительно возрастет

:4

2. [Уд] (ВО1) Н а пути сферической световой волны поставлена зонная пластинка (З.П.), которая перекрывает свет от четных зон Френеля. По сравнению с полностью открытым фронтом волны интенсивность света в точке наблюдения Р

1) станет равной нулю

2) значительно уменьшится

3) значительно возрастет

4) не изменится

:3

3. [Уд] (ВО1) Дифракционная решетка содержит 500 штрихов на 1 миллиметр. Период дифракционной решетки равен … мкм.

1) 0,2

2) 0,5

3) 1

4) 2

:4

4. [Уд] (ВО1) Если период дифракционной решетки равен d = 800 нм, то на каждом миллиметре дифракционной решетки содержится … штрихов.

1) 400

2) 800

3) 1250

4) 1600

:3

5. [Уд] (ВО1) Сферическая световая волна падает на круглое отверстие в непрозрачном экране. Интенсивность света в точке наблюдения напротив отверстия по сравнению с полностью открытым фронтом волны

1) увеличится, если открыты две первые зоны Френеля

2) возрастает, если закрыты все зоны Френеля, кроме первой

3) не зависит от расстояния между экраном и точкой наблюдения

4) всегда будет меньше

:2

6. [Уд] (ВО1) На узкую щель шириной а = 0,03 мм падает нормально монохроматический свет с длиной волны  = 420 нм. Под углом =3,20 наблюдается минимум света порядка m. Порядок дифракционного минимума m равен

1) 4

2) 7

3) 5

4) 2

:1

7. [Уд] (ВО1) На узкую щель шириной a=0,02 мм падает нормально монохроматический свет с длиной волны =700 нм. Угол дифракции, соответствующий минимуму второго порядка, равен

1)  = 5º

2)  = 3º

3)  = 4º

4)  = 2º

:3

8 . [Уд] (ВО1) Между точечным источником света и экраном помещен непрозрачный диск (см. рис.)