Файл: Реферат по дисциплине Технология эксплуатации нефтяных скважин на тему Технология исследования нагнетательных скважин результаты их применения.docx

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 09.01.2024

Просмотров: 79

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Забойные давления определяются:

- по данным прямого измерения глубинным манометром непосредственно на забое скважины;

- по данным измерения динамических уровней жидкости или прямых измерений глубинными манометрами в точках, отстоящих на значительном расстоянии от забоя - в скважинах, в которых по техническим причинам невозможен спуск приборов на забой;

- по данным измерений давления на устье.

Прямые измерения забойного давления производятся стандартными глубинными манометрами или комплексными приборами, имеющими датчики давления, в соответствии с инструкциями по эксплуатации этих приборов.

При использовании тензометрического датчика для определения забойного давления используется формула:
Р = С (R-Rатм) , где
Р - избыточное давление, МПа;

С - постоянная датчика, МПа/Ом;

R - сопротивление компенсатора измерительного моста, соответствующее измеряемому давлению, Ом;

R атм. - то же для давления.
3. Геофизические исследования при ремонте нагнетательных скважин
Первыми признаками имеющихся непроизводительных закачек в действующих нагнетательных скважинах в результате затрубной циркуляции или негерметичности обсадной колонны являются увеличение приемистости и снижение давления закачки по сравнению с предшествующим периодом. Эти данные по режиму закачки воды в скважину дают основание для проведения дополнительных исследований промыслово-геофизческими методами с целью определения интервалов ухода закачиваемой жидкости.

Геофизические исследования при ремонте нагнетательных скважин должны проводиться как в интервале объекта разработки с целью выявления возможных затрубных перетоков, негерметичности забоя, так и выше его (по стволу) с целью определения мест негерметичности обсадной колонны, возможных межпластовых перетоков за колонной.

Значительная часть задач по содержанию и способам их решения подобна рассмотренным для добывающих скважин (выделение интервала негерметичности колонны, определение межпластовых перетоков при герметичной обсадной колонне и др.). Однако способы решения отдельных задач учитывают особенности работы нагнетательных скважин. К таким относятся применение термометрии, нейтронных методов, радиоактивных изотопов для выделения интервалов заколонной циркуляции, оценка герметичности обсадной колонны при работе скважины на самоизлив.

Учитывая влияние работы нагнетательной скважины на строение теплового поля, необходимо чтобы зумпф скважины был не менее 20м, минимальное время остановки для востановления теплового поля для скважины , работающих более года, составляет 10-48 ч. В период остановки скважины и проведения термометрии герметизация устья должна исключать возможность движения жидкости в стволе скважины. Режим измерений и требования к чувствительности аппаратуры остаются такими же, как и при решении аналогичных задач в добывающих скважинах.


Исследования технического состоояния начинается с замерами температуры по стволу остановленной скважины со скоростью V=2000/T в масштабе глубин 1:500, температуры 0,1С/см. Наличие аномалий, не связанных с изменением температуры, обусловленной естественным тепловым полем, указывает на негерметичность колонны или заколонные перетоки. Регистрация диаграмм ГК, кроме привязки глубин к разрезу, в ряде случаев позволяет выделить интервалы увеличения естественной гамма-активности, которые соответствуют интервалам нарушения герметичности колонны. Это особенно характерно при закачке сточных вод, когда в интервалах ухода воды через повреждения в колонне отлагаются соли повышенной радиоактивности.

После анализа измерений по стволу скважины принимают решение о проведении детальных исследований с целью локализации интервалов негерметичности колонны. Одним из способов решения задачи являются исследования термометром, расходометром и локатором муфт при задавке в скважину жидкости.
4. Методы контроля за разработкой нефтяных месторождений
4.1 Термометрия

По данным термометрии в неперфорированных пластах прослеживают местоположение закачиваемых вод по площади и возможный их переток в затрубном пространстве. В связи с различием температур нагнетаемых и пластовых вод процесс вытеснения нефти водой сопровождается изменением температуры пласта. В перфорированных пластах термометрия применяется для выделения интервалов обводнения (отдающих жидкость в эксплуатационной и поглощающих - в нагнетательной скважине). Решение задачи производится путем сравнения геотермы (базисной температурной кривой, замеренной в простаивающей скважине, удаленной от мест отбора флюида и закачки, находящейся в режиме теплового равновесия с окружающими породами) с термограммами исследуемых скважин.

Прослеживание фронта распространения по пласту закачиваемой воды производится следующим образом. Обводненный пласт, в который закачивается вода с меньшей температурой, чем температура пластовой воды, отмечается на термограмме отрицательной аномалией по сравнению с геотермой.

Обводненный пласт определяется по положению точки М, характеризующейся минимальной температурой t. Границы распространения температурного фронта нагнетаемых вод, определяются проведением вспомогательной прямой ав. Вспомогательная прямая проводится параллельно геотерме на расстоянии t / 2 от нее с учетом погрешности записи термограммы. Границы температурного фронта соответствуют точкам пересечения а и в. В наклонных скважинах геотерма, являющаяся типовой для данного района, перестраивается с учетом угла наклона скважины.



Общим признаком затрубной циркуляции между пластами-коллекторами является резкое понижение геотермического градиента в интервале перетока, вплоть до нулевых значений. В зависимости от местоположения пласта-источника изменяется расположение термограммы относительно геотермы. Термограммы могут располагаться выше, ниже и пересекать геотермы. Весьма перспективен метод высокочувствительной термометрии при выделении газоносных, нефтеносных и водоносных интервалов в эксплуатационных действующих и остановленных скважинах с использованием дроссельного эффекта ( эффект Джоуля-Томсона).

Расчеты показывают, что при депрессии на пласт 2 МПа изменение температуры за счет дроссельного эффекта на контакте нефть-газ должно составлять от 5,8 до 9,2 0 С, на разделе вода - нефть - от 0,33 до 0,73 0 С и на границе вода-газ - от 5,47 до 8,47 0 С.

Наличие в скважине притока газа или нефти фиксируется температурной аномалией. При поступлении газа фиксируется заметным снижением температуры, при движении нефти на фоне изменения геотермического градиента за счет дроссельного эффекта возникают небольшие положительные аномалии. Измерение таких низких перепадов температур возможно термометрами с порогом чувствительности 0,02 - 0,03 0 С. Для получения максимального температурного эффекта против нефтеносных пластов необходимо проводить исследования высокочувствительной термометрией не более чем через 2-3 суток после остановки скважины.

На определенной стадии разработки нефтяные пласты начинают обводняться нагнетаемыми водами. Поступление воды в скважину свидетельствует о подходе фронта закачиваемой воды либо о прорыве нагнетаемой воды. Обводнение продуктивного пласта минерализованной водой сравнительно легко установить в необсаженных скважинах с помощью метода кажущегося сопротивления (КС) и индукционного метода (ИК) по заметному снижению удельного сопротивления пласта в интервале поступления воды , а в обсаженных скважинах - по данным радиоактивных методов - НГМ,ННМ-Т.

В процессе выработки залежи, особенно в ее поздней стадии, при замещении нефти или газа в пласте пресной водой, различить пласты нефтегазоносные и водонасыщенные по величине электрического сопротивления практически невозможно. Наиболее уверенно в необсаженных скважинах можно выделить обводненные пресной водой пласты по данным метода потенциалов собственной поляризации (ПС) пород. Если пласт обводнился в кровле, то наблюдается смещение линии глин кривой против покрывающих пород влево. В случае обводнения подошвы пласта - линия глин кривой против покрывающих глин смещается вправо), при обводнении пласта по всей его мощности отмечается общее уменьшение амплитуды.


В необсаженных скважинах для выделения обводненных пластов и интервалов их обводнения пресными водами эффективны диэлектрические методы (ДИМ и ВДМ). Обводненные участки пласта отмечаются более высокими значениями диэлектрической проницаемости, чем нефтенасыщенные. Например, диэлектрическая проницаемость нефтенасыщенных песчаников составляет 5 - 13 ед., а песчаников обводненных пресной водой - более 15 ед.

Эффективны при выделении обводненных пластов и интервалов обводнения в необсаженных скважинах данные низкочастотного широкополосного аккустического метода (НШАМ). Этот метод можно применять и в обсаженных скважинах, но при условии хорошего сцепления цемента с породой и колонной.

Контроль обводнения пластов в процессе разработки возможен по данным радиогеохимического эффекта. В процессе нефтяной залежи в передней части фронта вытеснения возникает поле аномально высоких концентраций радия и продуктов его распада - радиогеохимический эффект. Подход нагнетаемых вод с высокой концентрацией радиоактивных элементов к нефтяным скважинам и адсорбция радиоактивных солей поверхностью цементного камня сопровождаются аномальным повышением естественной радиоактивности в обводненной части пласта. Для определения обводняющихся интервалов измеряется интенсивность естественной радиоактивности до и в процессе обводнения. Естественная радиоактивность обводненной части пласта аномально возрастает, а гамма-активность нефтеносной его части остается неизменной.

Радиогеохимический эффект проявляется в скважинах при вытеснении нефти водой любой минерализации. Он считается установившимся, если естественная радиоактивность, обусловленная этим эффектом, на 10 % выше интенсивности естественного гамма - поля.
4.2 Расходометрия

Расходометрия заключается в измерении скорости перемещения жидкости в колонне скважины спускаемыми в нее на каротажном кабеле приборами, получившими название расходомеров. С их помощью решаются следующие основные задачи: в действующих скважинах выделяют интервал притока или поглощения жидкости, в оставленных выявляют наличие перетока жидкости по стволу скважины между перфорированными пластами, изучают суммарный дебит или расход жидкости отдельных пластов, разделенных неперфорированными интервалами строят профили притока или приемистости по отдельным участкам пласта или для пласта в целом.

Различают гидродинамические и термокондуктивные расходомеры, которые по условиям измерения делятся на пакерные и беспакерные.


Измерительным элементом гидродинамического расходомера является турбинка с лопастями, расположенная в канале так, что через нее проходит поток жидкости, заставляющий ее вращаться. При вращении турбинка приводит в действие магнитный прерыватель тока, по показаниям которого определяют частоту ее вращения. Чем выше дебит, тем быстрее вращается турбинка и тем больше импульсов в единицу времени поступит в измерительный канал. Частота импульсов преобразуется блоком частотомера в пропорциональную ей величину напряжения и по линии связи поступает на поверхность, где фиксируется регистрирующим прибором.

Применяют пакерные, с управляемым пакером и беспакерные приборы. Пакерный прибор РГД-5 дает возможность измерять весь приток жидкости в эксплуатационной колонне нагнетательной скважины диаметром 146-168 мм. Спуск беспакерного прибора или с управляемым пакером ДГД-8 возможен также при наличии в колонне насосно-компрессорных труб диаметром 50,8-63,5 мм.
5 Комплекс и методика проведения исследований
Комплекс измерений в скважине и методика их проведения будут определяться решаемыми задачами и конструкцией исследуемой скважины. В скважинах, в которых закачка агента ведется по нескольким пластам или объектам разработки исследования должны быть направлены на определение характера распределения профиля давления и объемов нагнетаемой воды по ним. Методика проведения исследований должна предусматривать проведение замеров в остановленной, принимающей и самоизливающей скважине.

5.1 Определение технического состояния водонагнетательной скважины

Эта задача предусматривает решение следующих вопросов: определение положения забоя, воронки НКТ, целостности обсадной колонны и НКТ , оценка герметичности затрубного пространства.

Комплекс методов для решения этих задач должен включать:

а) в скважинах без НКТ - для оценки герметичности обсадной колонны: термометрию, термокондуктивную и механическую расходометрию, локацию муфт;

б) для оценки герметичности затрубного пространства в районе перфорированных пластов и газонасыщенных интервалов: термометрию, расходометрию, локацию муфт, методы меченой жидкости изотопы, НКТ-50;

в) в скважинах с НКТ, спущенными ниже интервалов перфорации: термометрию, локацию муфт, термокондуктивную расходометрию, ГК, изотопы, НКТ-50.