Файл: 1 Начало промышленного производства ряда полимеров и пластмасс.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 10.01.2024

Просмотров: 333

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Потери на трение в уплотнениях из кожаных или резиновых манжет:

Потери на трение в уплотнениях манжет на основе пластиката ПВХ:

Периоды формования

4.6.6.10 Технологические расчеты при литье под давлением

Тема Т7 Технология и оборудование каландрования Конструкции и классификация каландров 6.2 Конструкции и классификация каландров и вальцовКонструкция универсальных каландров позволяет выполнять большинство технологических операций, производимых в процессе каландрования. Кроме того, существуют специализированные листовальные, промазочные, обкладочные (дублировочные), гладильные и тиснительные каландры.Каландры классифицируются в зависимости от назначения, количества расположения валков (рис. 6.1), типа привода и характера давления валков на материал.В зависимости от типа привода каландры бывают с одним общим и с индивидуальными приводами на каждый валок. По характеру давления валков на материал каландры бывают: с регулируемым давлением валков и изменяемым при помощи нажимных устройств зазором между ними; с постоянным давлением валков и переменным автоматически меняющимся зазором, зависящим от толщины материала. Наибольшее распространение получил четырехвалковый каландр с Г-образным расположением валков (рис. 6.2). Для вращения каждого из валков применяют индивидуальный привод, состоящий из электродвигателя и редуктора. Конструкция привода обеспечивает независимое плавное регулируемое изменение скорости вращения валков. Отношение скоростей вращения соседних валков называется фрикцией. Ее величина определяется конкретной технологической операцией, выполняемой в межвалковом зазоре. Например, в случае промазки тканей для интенсификации процесса затекания полимера в пространство между валками величину фрикции устанавливают в пределах 1:1,3÷1:1,4. Кроме того, фрикция необходима для более равномерного прогрева и гомогенизации полимерного материала, поступающего в зазор между валками. Рабочим органом каландра, формирующим полотно пленки или листа, являются валки. К качеству поверхности валков предъ­являются высокие требования, как к поверхности, так и форме. Высокое давление (7÷70 МПа), развивающееся в зазоре между валками каландра, вызывает значительные распорные усилия, достигающие до 100 тс (1 МН). Под действием распорных усилий валки прогибаются. Следствием этого является неравномерная толщина полотна полимерного материала по ширине. Наиболее толстым полотно оказывается в середине, где прогиб валка достигает максимального значения.Для компенсации прогиба с целью получения равнотолщинного полотна применяют следующие методы: бомбировка валков, перекос валков и контризгиб валков (рис. 6.3). Бомбировка валков заключается в придании им бочкообразной формы. Увеличение диаметра средней части валка по сравнению с диаметром по краю обеспечивает только частичную компенсацию прогиба, поскольку прогиб зависит от величины распорного усилия. Оно определяется вязкостью перерабатываемого материала, режимом переработки, размерами зазора. На заводе-изготовителе оборудования валку придается усредненная форма на основе расчетов для широкого круга перерабатываемых материалов и режимов.Компенсацию прогиба валков непосредственно при наладке конкретного технологического режима переработки при помощи механизма перекоса валков, предусмотренного в конструкции каландра. Клинья механизма перекоса разводят концы крайних валков в горизонтальной плоскости. Прогиб компенсируется тем, что зазоры по краям валков становятся больше, чем в середине. Сочетание бомбировки и перекоса валков является в настоящее время основным способом компенсации прогиба.Реже в качестве дополнительного приема применяются контризгиб валков. В этом случае прогиб валков уменьшается за счет усилия от гидроцилиндров, прикладываемого к шейкам валка в направлении, противоположном направлению распорного усилия. Недостаток этого способа более тяжелые условия работы подшипников валков.Комбинация указанных методов компенсации прогиба валков позволяет довести отклонение толщины полотна материале по его ширине до 1÷2 мкм.Каландрование осуществляется при температурах, соответствующих нахождению полимерного материала в вязко-текучем состоянии. Обогрев валков может осуществляться двумя способами подвода теплоносителя под рабочую поверхность валков (рис. 6.4): с центральным каналом для подвода теплоносителя и с переферийными каналами. Равномерный обогрев валка поддерживается системой термостатирования. При температуре переработки до 200÷220 0С в качестве теплоносителя применяют перегретую воду, пар или пароводяную смесь. Для достижения более высоких температур используют высокотемпературные органические теплоносители (ВОТ) или масляный, или электрообогрев.Особенность каландрования – постепенное уменьшение зазоров между валками по ходу перемещения материала, что приводит к различным величинам запаса материала в начальном, промежуточных и калибрующих зазорах. Количество материала, находящегося в межвалковом зазоре, уменьшается по мере удаления от середины валка к краям; происходит уширение материала. Одновременно с этим сокращается и время пребывания перерабатываемого материала в межвалковом зазоре. Приготовление полимерных композиций для полимерных покрытий 6.4.1 Приготовление полимерных композиций для полимерных покрытийНаносимые на основу полимерные покрытия находятся в жидком или вязко-текучем состоянии. После нанесения покрытий из жидкого полимера образуется прочная пленка. Применение полимеров в жидком состоянии позволяет наносить тонкие покрытия на большую поверхность с минимальными энергозатратами, а также обеспечивает частичную пропитку и лучшее сцепление покрытия с материалом основы. В таблице 6.1. указаны принципы образования покрытия в зависимости от типа полимера и формы исходного сырья Исходя из состояния полимера перед нанесением покрытия, по масштабу производства покрытия из пластизолей занимают ведущее место. Это объясняется тем, что порошкообразные эмульсионные ПВХ, как вы знаете, хорошо диспергируется в пластификаторах. ПВХ-пластизоли (ПВХ+пластификатор) можно хранить при комнатной температуре в течение суток без опасения седиментации (осаждения частиц). Кроме того, они обладают хорошей текучестью, что важно при нанесении покрытий. Путем добавления растворителя уменьшают их вязкость. Такие пасты называются органозоли (ПВХ+пластификатор+растворитель).Для приготовления пластизолей исходные компоненты смеси необходимо дозировать в правильном соотношении и перемешивать. Основные операции приготовления пластизолей и применяемое оборудование указаны в таблице 6.2. Основные компоненты порошкообразный ПВХ и пластификатор должны обладать реологическими свойствами и жизнеспособностью, соответствующими предъявляемым требованиям. Суспензии склонны коагулировать. Для приготовления водных суспензий применяют ПВА, ПАК, ПВХ (см. таблицу 6.1), ПС, латексы НК и СК. Они содержат 40÷50 % полимера, поэтому низковязкие.Добавлением водорастворимых солей ПАК, водорастворимых полимеров – ПВС, казеиновый клей и др. увеличивают вязкость композиции.Из различных низкомолекулярных веществ (мономеров) и промежуточных продуктов производства полимеров (олигомеров) композициями для нанесения покрытий могут служить вещества, обладающие необходимой вязкостью. Требуемая вязкость достигается форполемиризацией или смешением компонентов с различной степенью полимеризации. Растворители при этом не применяются, т.к. их роль выполняют мономеры, содержащиеся в пленке. Технология приготовления смеси в этом случае такая же, как при получении растворов. Выбор полимера ограничен требованием быстрой сушки пленки. Применяют полиуретановую композицию горячего отверждения и олигомеры акрилата.При нанесении покрытий из термопластов (нанесение расплавов) они применяются в виде порошка, гранул, кусков, блоков. При этом порошки агломерируют со вспомогательными веществами. Процесс смешения исходных компонентов совмещают с пластикацией (плавлением). Термопластичные покрытия наносят преимущественно из пластифицированного ПВХ и ПЭ. Технология нанесения полимерных покрытий 6.4.2 Технология нанесения полимерных покрытийтехнология нанесения полимерных покрытий состоит из стадий нанесения покрытия и образования пленки. Основной процесс при нанесении покрытий это пленкообразование. Стадии процесса пленкообразования из ПВХ-пластизолей - желатинизации (желирования) показаны на рис. 6.14.Различают прямой способ нанесения покрытий – непосредственное нанесения покрытий на основу и косвенный способ – нанесение полимерной пасты на транспортерную ленту.Нанесение покрытий осуществляется с помощью раклей, валков, фильтрационным способом, на каландрах, под давлением, разбрызгиванием раствора полимера на основу. Наиболее распространенные первые два способа и на каландрах.Назначение раклей – равномерное распределение полимерной композиции (пасты) на поверхности основы. Ракля представляет собой клиновидный нож, длина рабочей части которого равна ширине полотна основы. Конструкции применяемых раклей показаны на рис. 6.15.На рис. 6.16 представлены три схемы нанесения покрытий с помощью раклей. Обычно ракля устанавливается стационарно вертикально или под углом к ленте материала основы. При нанесении покрытий масса полимерной пасты перед раклей совершает циркуляционное движение. При этом ее а – частицы ПВХ в пластификаторе находятся в виде суспензии или отдельных агломератов; б – диспергирование агломератов при нагреве до 60 0С; в – набухание частиц ПВХ; г – полная сквозная пропитка пластификатором при 100 0С; д – плавление ПВХ при 160 0С, за счет чего границы контакта набухших частиц размываются запас перед раклей поддерживается постоянным. Большое влияние на процесс нанесения покрытий оказывает скорость сдвига в зазоре между раклей и основой: чем меньше толщина покрытия, тем выше скорость сдвига.При помощи валков реализуется принцип мокрого способа нанесения покрытий и возможность нанесения покрытий разнообразны. Принцип мокрого способа заключается в том, что дозирование количество пасты полностью или частично, но регулярно наносится на материал основы. Для промазки применяется один или несколько валков.На рис. 6.17 показан один из вариантов нанесения покрытий валковым способом. Лента – основа проходит вместе с металлической транспортной лентой. Промазочный валок гуммирован.При нанесении полимерных покрытий на каландрах полимер находится в пластичном или эластичном состоянии, благодаря чему он не только обладает хорошей адгезией к материалу основы, но также образует механическую связь с покрываемым материалом (вследствие возможности заполнения пор). Поэтому возможно нанесение с помощью каландров односторонних и многослойных покрытий рис. 6.18. Нанесение двухсторонних или многослойных покрытий осуществляется многократным его пропусканием через каландр.Технические варианты нанесения покрытий каландровым методом показаны на рис. 6.11 при производстве основного линолеума и на рис. 6.18 -- 6.20. На рис. 6.18 показан валковый агрегат для нанесения покрытий из расплавов полимеров, а на рис. 6.19 – двухсторонне нанесение покрытий, когда покрывной полимерный материал применяется в виде пленки. На рис. 6.21 показан кашировальный агрегат при получении клеенки (вариант “д” схемы, рис. 6.9). На рис. 6.22 показана одна из применяемых схем агрегатов производства текстовинита. Технологический процесс производства текстовинита на основе пластизолей ПВХ состоит из нескольких операций. Хлопчатобумажная ткань (молескин, бязь, миткаль, палатка башмачная и др.), предварительно сшитая на швейной машине “зиг-заг” и подсушенная до остаточной влажности 5 %, проходит все операции на текстовинитовом агрегате непрерывного действия.Агрегат включает следующие устройства: натяжной барабан; накладочный стол с раклей, на котором на движущуюся ткань накладывается слой пластизоля заданной толщины; две термокамеры с плитами обогрева (нагрев теплоизлучением), в которой происходит последовательно оплавление и сплавление ПВХ-пасты в пленку; два уплотнительных вала с электрообогревом, служащие для уплотнения и калибрования покрытия; тиснительно-закаточный станок для завершающих операций – нанесение рисунка тиснения (мереи) на пленку, охлаждение текстовинита (закрепление рисунка) и закатку в рулон. Пористые текстовиниты и искусственная замша перед намоткой в рулон направляются на промывку и сушку. При изготовлении искусственной замши на поверхность размягченного ПВХ-слоя насыпают слой Na2SO4. Осевшие в покрытии мелкие кристаллы соли после промывки горячей водой вымываются, образуя замшевидную пористую поверхность. Промывка пористого текстовинита (для обуви), полученного путем нанесения пасты, содержащей глицерин или CaCl2, а также имеющего на поверхности Na2SO4, производится в ванной.Тема Т8 Формование изделий из полимерных композиционных материалов Армирующие наполнители волокнистой структуры для полимерных композитов 7.2 Армирующие наполнители волокнистой структуры для полимерных композитов7.2.1 Армирующие волокнаПочему, именно при создании композиционных материалов было обращено внимание на материалы волокнистого строения, как в качестве наполнителя?Прежде всего тем, что практическая прочность очень тонких нитевидных материалов из различных веществ значительно выше прочности массивных. Высокая прочность волокон органического происхождения, а также неорганических волокон (например, асбест) объясняется:Высокой степенью ориентации цепочечных межмолекулярных образований и упорядоченностью их структуры. Такая структура являются следствием процессов или вытяжки, или ориентации при получении.Нитевидные материалы имеют меньший объем и поверхность по сравнению с объемными изделиями. Следовательно, содержат меньшее количество дефектов, микротрещин и других неоднородностей в своей структуре.Согласно статистической природы прочности материалов прочность определяется количеством структурных дефектов, особенно поверхностных. Так, прочность органических волокон в десятки раз выше прочности массивных образцов, а прочность очень тонких стеклянных и кварцевых волокон на 2÷3 порядка выше массивных материалов (таблица 7.4).Стеклянные волокна являются армирующим наполнителем наиболее распространенного композиционного материала конструкционного назначения – стеклопластиков. Наша отечественная промышленность производит стеклянные наполнители в виде элементарного непрерывного или штапельного волокна Ø2÷40 мкм и более, стеклонитей, стекложгутов различной толщины, стеклотканей разнообразного плетения – плоских и объемных, стекломатов и стеклохолстов различной толщины и плотности. Это дает возможность изготовлять детали и узлы конструкций из стеклопластиков с оптимальными технологическими и эксплуатационными свойствами.Непрерывное стеклянное волокно изготовляют из расплавленной стекломассы путем быстрого вытягивания струи на выходе из фильеры. Короткие волокна получают либо разрезкой непрерывных волокон (рубленное волокно), либо распылением расплавленной стекломассы на выходе из фильеры струей пара, воздуха или горячих газов (штапельное волокно). Непрерывное стеклянные волокна обладают значительно большей прочностью, чем штапельное, и чаще применяются в производстве изделий, предназначенных для высоконагруженных конструкций.Свойства стеклянных волокон во многом определяются их составом. В зависимости от основного назначения стеклянные волокна получают следующих составов: алюмоборсиликатные, алюмосиликатные, магнийалюмосиликатные (высокопрочные), алюмоциркониевые, свинцовые (для радиационной защиты), кремнеземные, кварцевые. Вышеперечисленные волокна почти полностью утрачивают прочность при 700 0С. Для стеклопластиков, эксплуатируемых выше 400÷500 0С, получают из SiO2 и бинарных систем, в которых помимо оксида кремния SiO2 содержатся оксиды HfO2, GeO2, TiO2 или Al2O3.Для более широкого варьирования свойств стеклопластиков выпускаются непрерывные стеклянные волокна не только по форме круглого цилиндра, но и других геометрических форм. Непрерывные стеклянные волокна, имеющие любую форму. кроме цилиндрической, принято называть профильными волокнами.Выпускаются профильные волокна, как показано на рис. 7.1, следующих форм: сплошные и полые.Применение профильных стеклянных волокон в качестве наполнителя дает возможность в случае полых волокон снизить плотность стеклопластиков, увеличить их удельную жесткость при изгибе и прочность при сжатии, улучшить диэлектрические и теплоизоляционные свойства. В случае волокон гексагональной, эллиптической, прямоугольной или гофрированной формой сечения – повысить плотность упаковки волокон в композиции, увеличить прочность и жесткость пластика, особенно в поперечном направлении. В случае стеклянной микроленты – снизить газопроницаемость пластика.Углеродные волокна (карбоволокна) являются основным армирующим наполнителем в полимерных композиционных материалах как углепластики (карбопластики). Углеродные волокна получают высокотемпературным пиролизом в инертной среде. Производство углеродных волокон сложный многостадийный процесс и состоит из четырех этапов: -получение полимерного волокна;-стабилизация на воздухе при 200÷300 0С (глубокая термическая деструкция и циклизация);-карбонизация при температурах до 1500 0С в атмосфере азота с малыми примесями кислорода (до 0,00025 %) для повышения прочности волокна;-высокотемпературная обработка (графитизация) при температурах до 3000 0С в атмосфере азота или аргона, идет кристаллизация графитоподобных образований.Свойства углепластиков зависят от свойств углеродных волокон, которые в свою очередь определяются условиями пиролиза органических волокон. Существует следующая классификация углеродных волокон по физико-механическим свойствам:низкомодульные – (Ер ≤ 10·104 МПа);среднемодульные – (Ер



Режим “без подпрессовки” (а) используется для прессования небольших изделий с металлической арматурой и оформляющими знаками.

Режим “подпрессовка без паузы” (б) применяется для прессования небольших изделий без арматуры и знаков.

Режим “подпрессовка после паузы” (в) применяется для прессования крупных изделий и из медленноотверждающихся материалов, (на основе кремнийорганических связующих).

Режим “подпрессовка с паузой” (г) применяется для прессования крупногабаритных изделий с арматурой.

Режим “подогрев пресс-материала в пресс-форме” (д) характеризуется остановкой пуансона до его полного смыкания с матрицей (создается зазор 35 мм), что обеспечивает хороший подогрев массы. Режим применяют для прессования аминопластов, а также фенопластов с низкой текучестью.

При формовании изделий иногда применяется и другой прием – “задержка давления”. Он заключается в выдерживании небольшой паузы между моментом соприкосновения пуансона с пресс-материалом и моментом начала смыкания пресс-формы. Применяется при работе с материалами повышенной текучести, при наличии в пресс-формах больших зазоров (выпаров) для вытекания материала или труднозаполняемых углублений.

После окончания выдержки под давлением производится распрессовка и съем изделия. Подвижная плита пресса перемещается вверх и происходит раскрытие формы. В зависимости от конструкции стационарной пресс-формы и вида изделия съем пресс-изделий может производиться с помощью толкателей формы, соединенных со штоком выталкивающего гидроцилиндра пресса, а из съемных пресс-форм с применением приспособлений –разъемников и пневматических малогабаритных прессов.

Для очистки оформляющих поверхностей пресс-формы от остатков материала (облой) производится их обдув сжатым воздухом с помощью пистолета. Если наплывы пресс-материала струей сжатого воздуха не удаляются, то применяют скребки, изготовленные из мягкой стали или латуни.
Стационарные пресс-формы не требуют специальной сборки. В них после очистки вставляют арматуру, оформляющие знаки, вкладыши, вставки, предусмотренные конструкцией формы и изделия. Съемные пресс-формы собирают на рабочем столе прессовщика с использованием разъемных приспособлений.

Перед следующей запрессовкой оформляющая поверхность протирается ветошью и смазывается смазкой в аэрозольной упаковке (кремнийорганические жидкости) или ветошью, пропитанной смазкой.

Тема Т5 Технология и оборудование для изготовления изделий литьем под давлением

  1. Общая характеристика конструкции литьевых машин. Инжекционные механизмы.

Литьевые машины предназначены для формования изделий из термопластов, реактопластов и эластомеров

Литьевая машина состоит из устройства для дозирования материала, механизмов для замыкания формы и инжекции (впрыскивания), привода, пультов управления и регулирования параметрами процесса литья.

Основные параметры литьевой машины:

  • диаметр шнека (D);

  • номинальное усилие запирания формы (Fном);

  • номинальные объем (Vном) и площадь одной отливки (S);

  • ход подвижной плиты и максимальные размеры устанавливаемых форм;

  • номинальное инжекционное давление л);

  • мощность электродвигателя привода и нагревателей инжекционного цилиндра;

  • габариты и масса машины.

Важнейшие узлы машины – это механизмы инжекционный (материальный) и замыкания формы. По их расположению литьевые машины подразделяются на: горизонтальные, вертикальные, угловые и комбинированные. Конструктивная классификация и принцип работы литьевой машины со шнекой (червячной) пластикацией будет рассмотрена в дисциплине “Основы проектирования и оборудование предприятий по переработке полимеров”.

Литьевые машины классифицируют по мощности, конструкции и типу привода. По виду привода классифицируют на механические, гидравлические, пневматические и смешенные (гидромеханические, пневмомеханические, пневмогидравлические).

4.3 Общая характеристика конструкции литьевых машин

Основными технологическими узлами машины являются механизмы инжекции (впрыска) и замыкания литьевой формы.

4.3.1 Инжекционные механизмы

На современных литьевых машинах применяют инжекционные механизмы, в которых процессы пластикации и инжекции материала совмещены или раздельны. В обоих случаях механизмы классифицируют на поршневые и червячно-поршневые, одно- и двухчервячные. Кроме того, одно- и двухчервячные дополнительно разделяют в зависимости от наличия или отсутствия осевого перемещения червяка. Все инжекционные механизмы классифицируют по конструктивным признакам на одно-, двух- и трехцилиндровые.



Наибольшее распространение получили одночервячные механизмы с осевым перемещением червяка и червячно-поршневые.

Качество отливаемых изделий зависит не только от степени пластикации и гомогенизации расплава, но и от конструкции и работы инжекционного сопла. В зависимости от свойств перерабатываемого материала на инжекционных цилиндрах устанавливают различные сопла. Открытые сопла применяют для инжекции склонных к деструкции вязких материалов, например ПВХ. Их также применяют в машинах высокой производительности, когда небольшое вытекание расплава из сопла в период между впрысками неопасно. При переработке термопластов со средней и низкой вязкостью используют плавающее сопло. Оно открывается при его упоре в литниковую втулку формы.

При литье тонкостенных изделий небольшого размера, а также при переработке термопластов с резко выраженной точкой плавления и низкой вязкостью, например, полиамидов, применяют либо сопло, открывающееся под давлением расплава, либо самозапирающееся с игольчатым запорным клапаном. В этих случаях пружина сопла отрегулирована на заданное инжекционное давление.

При инжекции расплава в литьевую форму возможна его утечка (обратное течение) по винтовому каналу червяка и через кольцевой зазор между гребнем червяка и цилиндром. При этом инжекционное давление при впрыске уменьшается. Для устранения утечек материала и повышения его давления при инжекции применяют обратные кольцевые или поршневые клапаны. Они установлены около наконечника червяка и перемещаются вдоль его оси.

Для привода (вращения и осевого перемещения) червяков инжекционного механизма применяют электромеханические и гидравлические приводы. Осевое перемещение червяка в обеих вариантах обеспечивается гидроцилиндром.

Крутящий момент при вращении червяка передается электродвигателем через цилиндрический или червячные редукторы. При гидравлическом приводе крутящий момент передается на червяк от гидравлического двигателя через цилиндрический редуктор. На современных литьевых машинах для осевого перемещения и вращения червяка применяют гидроцилиндр, в который встроен малогабаритный гидравлический двигатель.

  1. Общая характеристика конструкции литьевых машин. Механизмы замыкания формы

4.3.2 Механизмы замыкания формы

Механизмы замыкания формы применяют для ускоренного перемещения подвижной плиты с полуформой при предварительном смыкании и размыкании литьевой формы, а также для ее запирания с большим усилием. Наиболее распространенные механизмы замыкания разделяют на
гидравлические, гидромеханические, электромеханические. Наибольшее распространение получили одно- и двухступенчатые гидравлические и гидромеханические механизмы. Электромеханические применяют реже из-за сложности регулирования и управления, сравнительно высокой стоимости. Выбор механизма замыкания определяется мощностью литьевой машины.

На рис. 4.7 показан кинематический узел привода электромеханического механизма. Крутящий момент передается от вала электродвигателя через редуктор на диск фрикционной муфты, которая соединена с шестерней (5), свободно установленной на валу (3). От шестерни (5) вращательное движение передается через шестеренчато-рычажный узел и преобразуется поступательное движение подвижной плиты при ее смыкании и размыкании с неподвижной плитой машины.

На рис. 4.8 показан один из типов гидромеханического двухступенчатого механизма замыкания, основными узлами которого являются два гидроцилиндра и система складывающихся рычагов. В исходном положении плунжер центрального гидроцилиндра находится в крайнем левом положении, а сложенные рычаги (5) и (6) в направляющем цилиндре. Под действием давления в центральном гидроцилиндре быстро перемещается промежуточная плита (7) и подвижная (9). При этом предварительно замыкается форма. После выхода из направляющего цилиндрарычаги (5) раздвигаются и упираются в скошенные площадки неподвижной плиты (4). Окончательно форма запирается под высоким давлением главного гидроцилиндра, длина хода поршня которого 5÷10 мм. Принцип действия гидравлического механизма замыкания формы, такой же, как и у гидроцилиндра с дифференциальным плунжером гидропресса. Отечественные термопластавтоматы снабжены в основном гидравлическим механизмом замыкания.

  1. Методы литья под давлением. Дать понятия (Инжекционный, Интрузионный, Инжекционно-газовое литье, Сэндвич-литье)

4.5 Методы литья под давлением
Исключительное разнообразие штучных изделий из полимерных материалов, широкий комплекс предъявляемых к ним требований (потребительские, эксплуатационные, технологических, экономические, дизайна) диктует необходимость применения и совершенствования разнообразных методов литья под давлением, каждый из которых позволяет наиболее полно решать поставленные задачи.

Литье под давлением термопластов с червячной пластикацией может осуществляться следующими методами:


Инжекционный. При инжекционном режиме, как вы уже знаете, вращение шнека ведется только в период набора дозы материала и его пластикации в инжекционном цилиндре, а подача в форму осуществляется за счет поступательного движения шнека под высоким давлением (100÷200 МПа) за короткий, измеряемый секундами, интервал времени. Это наиболее распространенный способ. Он позволяет получать изделия сложной конфигурации, с различной толщиной стенок, допускает использование многогнездных форм с различной литниковой системой. Особенность технологии – объем изделий с литниками не превышает паспортного (номинального) объема впрыска используемой литьевой машины.

Интрузионный. Для отливки толстостенных изделий большой массы на обычных одночервячных литьевых машинах применяют процесс интрузии. Его суть – вращением червяка расплав в режиме интрузии форма заполняется постепенно и равномерно расплавом, нагнетаемым червяком через сопло большого сечения, переходящего в литник формы. После этого червяк останавливается и осевым движением подпитывает форму, компенсируя естественную усадку остывающего расплава. Часть расплава при вращении червяка из движущегося с равномерной скоростью потока соприкасается с оформляющей поверхностью формы, остывает и частично затвердевает. То есть, когда последняя доза материала, необходимая для заполнения формы, пластифицируется и нагнетается вращающимся червяком, расплавленный в начале цикла материал начинает охлаждаться.







Таким образом, операции пластикации материала, заполнения формы и охлаждения совмещаются. Материал испытывает термическое напряжение только в течение пластикации и нагнетания в форму. Скорость впрыска при интрузии меньше скорости инжекции при обычных способах литья под давлением. Однако общая длительность процесса не увеличивается из-за частичного совпадения по времени отдельных операций литья. До 75÷90 % объема полости формы заполняется под давлением вращающегося червяка, а остальная часть под давлением перемещающегося в осевом направлении червяка. Однако в некоторых случаях форма может быть полностью заполнена материалом, нагнетаемым вращающимся червяком.