Файл: Основные несущие конструкции опз (колонны, подкрановые балки, фундаментные балки, стеновые ограждения)..docx
Добавлен: 10.01.2024
Просмотров: 45
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Министерство образования и науки Республики Казахстан
Международная образовательная корпорация
Казахская Головная Архитектурно-Строительная Академия
Реферат
Проектирование и расчет железобетонных и каменных конструкций II
Тема: «Основные несущие конструкции ОПЗ (колонны, подкрановые балки, фундаментные балки, стеновые ограждения).»
Выполнил: РПЗС 20-9 Жанабергенов А.Т.
Проверилa: Ажгалиева Б.А.
Алматы, 2023 г
Для металлургической, машиностроительной, легкой и других отраслей промышленности возводят одноэтажные каркасные здания (рис.1, а). Конструктивной и технологической особенностью таких зданий является оборудование их транспортными средствами, мостовыми и подвесными кранами. Мостовые краны перемещаются по специальным путям, опертым на колонны; подвесные краны перемещаются по путям, подвешенным к элементам покрытия, Покрытие одноэтажного промышленного здания может быть балочным из, линейных элементов или пространственным в виде оболочек.
К элементам конструкции одноэтажного каркасного здания с балочным покрытием относятся: колонны (стройки), заделанные в фундаментах; ригели покрытия (балки, фермы, арки), опирающиеся на колонны, плиты покрытия, уложенные по ригелям; подкрановые балки; световые или аэрационные фонари. Основная конструкция каркаса - поперечная рама, образованная колоннами и ригелями.
Пространственная жесткость и устойчивость одноэтажного каркасного здания достигаются защемлением колонн в фундаментах. В поперечном направлении пространственная жесткость здания обеспечивается поперечными рамами, в продольном - продольными рамами, образованными теми же колоннами, элементами покрытия, подкрановыми балками и вертикальными связями (рис. 1, б, в).
Система вертикальных и горизонтальных связей имеет следующие назначения: обеспечить жесткость покрытия в целом; придать устойчивость сжатым поясам ригелей поперечных рам; воспринимать ветровые нагрузки, действующие на торец здания; воспринимать тормозные усилия от мостовых кранов. Система связей работает совместно с основными элементами каркаса и повышает пространственную жесткость здания.
Сетка колонн одноэтажных каркасных зданий с мостовыми кранами в зависимости от технологии производственного процесса может быть 12× 18, 12× 24, 12× 30 м или 6× 18, 6× 24, 6× 30 м. Шаг колонн принимают преимущественно 12 м; если при этом шаге используются стеновые панели длиной 6 м, то по наружным осям кроме основных колонн устанавливают промежуточные (фахверковые) колонны. При шаге колонн 12 м возможен шаг ригелей 6 м с использованием в качестве промежуточной опоры подстропильной фермы (рис.3).
sz.kz
Национальная лотерея Satty Zhuldyz!
Учавствуй и получи шанс выиграть квартиру!
Подробнее
РЕКЛАМА
Рис. 1. Одноэтажное промышленное здание с мостовыми кранами:
а - конструктивный поперечный разрез; б - расчетная схема поперечной рамы; в - расчетная схема продольной рамы
Рис.2. Одноэтажные промышленное здания с плоским покрытием:
1 - длинномерные плиты покрытия; 2 - продольные балки
Лучшие технико-экономические показатели по трудоемкости и стоимости достигаются в сборных железобетонных покрытиях при шаге колонн 12 м без подстропильных ферм.
В целях сохранения однотипности элементов покрытия колонны крайнего ряда располагают так, чтобы разбивочная ось ряда проходила на расстоянии 250 мм от наружной грани колонны (рис.4.). Колонны крайнего ряда при шаге 6 м и кранах грузоподъемностью до 30 т располагают с нулевой привязкой, совмещая ось ряда с наружной гранью колонны (рис.5, а). Колонны торцов здания смещают с поперечной разбивочной оси на 500 мм (рис.5, б). При большой протяженности в поперечном и продольном направлениях здание делят температурными швами на отдельные блоки.
Продольный температурный шов выполняют, как правило, на спаренных колоннах со вставкой (рис.4, в), при этом колонны у температурного шва имеют привязку к продольным разбивочным осям 250 мм (или нулевую при 6м). Поперечный температурный шов также выполняют на спаренных колоннах, но при этом ось температурного шва совмещается с поперечной разбивочной осью, а оси колонн смещаются с разбивочной оси на 500 мм (рис.5, г).
Рис.5. Компоновочные схемы привязки к разбивочным осям колонн:
а - крайнего ряда при шаге 6 м; б - в торце здания; в - у продольного температурного шва;
г - у поперечного температурного шва
Расстояние от разбивочной оси ряда до оси подкрановой балки при мостовых кранах грузоподъемностью до 50 т принято λ =750 мм (см. рис.3). Это расстояние складывается из габаритного размера крана В, размера сечения колонны в надкрановой части и требуемого зазора С между габаритом крана и колонной. На крайней колонне λ = (в мм).
Виды сборных ж.б. стропильных конструкций покрытий ОПЗ. Последовательность расчета по прочности сборных ж.б. раскосных ферм (перечислить этапы расчета, начиная со сбора нагрузок). Основные принципы их конструирования, включая конструирование опорного и одного из промежуточных узлов.
|
Железобетонные фермы применяют при пролетах 18, 24 и 30 м и шаге 6 или 12 м. В железобетонных фермах в сравнении со стальными расход металла почти вдвое меньше, но трудоемкость и стоимость изготовления немного выше. Бывают 3 основных вида сборных ж.б. ферм: полигональные (многоугольные), арочные раскосные и безраскосные.
altel.kz
Больше информации на сайте рекламодателя
Подробнее
РЕКЛАМА
Рис.1. Конструктивные схемы железобетонных ферм
|
При определении изгибающих моментов от внеузловой нагрузки верхний пояс рассматривают как неразрезную балку, опорами которой являются узлы.
Прочность сечений поясов и решетки рассчитывают по формулам для сжатых и растянутых элементов.
Арматуру опорного узла фермы на основании исследований рассчитывают по схеме, изображенной на (рис.5, а.). Площадь сечения продольной ненапрягаемой арматуры
, (1)
где N - расчетное усилие приопорной панели.
В узлах железобетонных ферм для надежной передачи усилий от одного элемента к другому создают специальные уширения — вуты, позволяющие лучше разместить и заанкерить арматуру решетки (рис. 13.39). Узлы армируют окаймляющими цельногнутыми стержнями диаметром 10... 18 мм и вертикальными поперечными стержнями диаметром 6...10 мм с шагом 100 мм, объединенными в сварные каркасы. Арматуру элементов решетки заводят в узлы, а растянутые стержни усиливают на конце анкерами в виде коротышей, петель, высаженных головок. Надежность заделки проверяют расчетом.
Опорные узлы ферм армируют дополнительной продольной ненапрягаемой арматурой и поперечными стержнями, обеспечивающими надежность анкеровки растянутой арматуры нижнего пояса и прочность опорного узла по наклонному сечению. Кроме того, чтобы предотвратить появление продольных трещин при отпуске натяжения арматуры, ставят специальные поперечные стержни, приваренные к закладным опорным листам, и сетки.
Пример армирования сегментной фермы пролетом 24 м приведен на рис. 13.40. Напрягаемую арматуру нижнего пояса фермы предусматривают нескольких видов: канаты класса К-7, К-10; стержневую класса А-IV, высокопрочную проволоку Вр-11. Арматуру натягивают на упоры. Хомуты нижнего пояса выполняют в виде встречно поставленных П-образных сеток, окаймляющих напрягаемую арматуру. В опорном узле поставлены дополнительные продольные ненапрягаемые стержни диаметром 12 мм, заведенные в приопорную панель нижнего пояса, и поперечные стержни диаметром 10 мм.
Отрыв части опорного узла по линии АВ происходит под влиянием усилия Nsinα, действующего нормально к плоскости отрыва. Этому отрыву оказывают сопротивление усилия: в продольной напрягаемой арматуре , в продольной ненапрягаемой арматуре , в хомутах . Отсюда условие прочности на отрыв:
, (2)
которое после сокращения на sinα принимает вид
, (3)
Рис. 5. К расчету узлов ферм: а - опорного узла; б - промежуточного узла
|
Усилия в продольной арматуре
; (4)
. (5)
Усилия в хомутах
.(6)
Площадь сечения одного хомута