Файл: Основные несущие конструкции опз (колонны, подкрановые балки, фундаментные балки, стеновые ограждения)..docx

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 10.01.2024

Просмотров: 45

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Министерство образования и науки Республики Казахстан

Международная образовательная корпорация

Казахская Головная Архитектурно-Строительная Академия



Реферат

Проектирование и расчет железобетонных и каменных конструкций II

Тема: «Основные несущие конструкции ОПЗ (колонны, подкрановые балки, фундаментные балки, стеновые ограждения).»

Выполнил: РПЗС 20-9 Жанабергенов А.Т.

Проверилa: Ажгалиева Б.А.

Алматы, 2023 г

Для металлургической, машиностроительной, легкой и других отраслей промышленности возводят одноэтажные каркасные здания (рис.1, а). Конструктивной и технологической особенностью таких зданий является оборудование их транспортными средствами, мостовыми и подвесными кранами. Мостовые краны перемещаются по специальным путям, опертым на колонны; подвесные краны перемещаются по путям, подвешенным к элементам покрытия, Покрытие одноэтажного промышленного здания может быть балочным из, линейных элементов или пространственным в виде оболочек.

К элементам конструкции одноэтажного каркасного здания с балочным покрытием относятся: колонны (стройки), заделанные в фундаментах; ригели покрытия (балки, фермы, арки), опирающиеся на колонны, плиты покрытия, уложенные по ригелям; подкрановые балки; световые или аэрационные фонари. Основная конструкция каркаса - поперечная рама, образованная колоннами и ригелями.

Пространственная жесткость и устойчивость одноэтажного каркасного здания достигаются защемлением колонн в фундаментах. В поперечном направлении пространственная жесткость здания обеспечивается поперечными рамами, в продольном - продольными рамами, образованными теми же колоннами, элементами покрытия, подкрановыми балками и вертикальными связями (рис. 1, б, в).

Система вертикальных и горизонтальных связей имеет следующие назначения: обеспечить жесткость покрытия в целом; придать устойчивость сжатым поясам ригелей поперечных рам; воспринимать ветровые нагрузки, действующие на торец здания; воспринимать тормозные усилия от мостовых кранов. Система связей работает совместно с основными элементами каркаса и повышает пространственную жесткость здания.


Сетка колонн одноэтажных каркасных зданий с мостовыми кранами в зависимости от технологии производственного процесса может быть 12× 18, 12× 24, 12× 30 м или 6× 18, 6× 24, 6× 30 м. Шаг колонн принимают преимущественно 12 м; если при этом шаге используются стеновые панели длиной 6 м, то по наружным осям кроме основных колонн устанавливают промежуточные (фахверковые) колонны. При шаге колонн 12 м возможен шаг ригелей 6 м с использованием в качестве промежуточной опоры подстропильной фермы (рис.3).



sz.kz
Национальная лотерея Satty Zhuldyz!

Учавствуй и получи шанс выиграть квартиру!

Подробнее
РЕКЛАМА


Рис. 1. Одноэтажное промышленное здание с мостовыми кранами:

а - конструктивный поперечный разрез; б - расчетная схема поперечной рамы; в - расчетная схема продольной рамы

 



Рис.2. Одноэтажные промышленное здания с плоским покрытием:

1 - длинномерные плиты покрытия; 2 - продольные балки

Лучшие технико-экономические показатели по трудоемкости и стоимости достигаются в сборных железобетонных покрытиях при шаге колонн 12 м без подстропильных ферм.

В целях сохранения однотипности элементов покрытия колонны крайнего ряда располагают так, чтобы разбивочная ось ряда проходила на расстоянии 250 мм от наружной грани колонны (рис.4.). Колонны крайнего ряда при шаге 6 м и кранах грузоподъемностью до 30 т располагают с нулевой привязкой, совмещая ось ряда с наружной гранью колонны (рис.5, а). Колонны торцов здания смещают с поперечной разбивочной оси на 500 мм (рис.5, б). При большой протяженности в поперечном и продольном направлениях здание делят температурными швами на отдельные блоки.

Продольный температурный шов выполняют, как правило, на спаренных колоннах со вставкой (рис.4, в), при этом колонны у температурного шва имеют привязку к продольным разбивочным осям 250 мм (или нулевую при 6м). Поперечный температурный шов также выполняют на спаренных колоннах, но при этом ось температурного шва совмещается с поперечной разбивочной осью, а оси колонн смещаются с разбивочной оси на 500 мм (рис.5, г).



 



Рис.5. Компоновочные схемы привязки к разбивочным осям колонн:

а - крайнего ряда при шаге 6 м; б - в торце здания; в - у продольного температурного шва;

г - у поперечного температурного шва

 

Расстояние от разбивочной оси ряда до оси подкрановой балки при мостовых кранах грузоподъемностью до 50 т принято λ =750 мм (см. рис.3). Это расстояние складывается из габаритного размера крана В, размера сечения колонны в надкрановой части   и требуемого зазора С между габаритом крана и колонной. На крайней колонне λ =   (в мм).

 



 

 

Виды сборных ж.б. стропильных конструкций покрытий ОПЗ. Последовательность расчета по прочности сборных ж.б. раскосных ферм (перечислить этапы расчета, начиная со сбора нагрузок). Основные принципы их конструирования, включая конструирование опорного и одного из промежуточных узлов.

 

Различают следующие основные типы фермы; сегментные с верхним поясом ломаного очертания и прямолинейными участками между узлами (рис.1, а); арочные pacкocныe с редкой решеткой и верхним поясом плавного криволинейного очертания (рис.1, б); арочные безраскосные с жесткими узлами в примыкании стоек к поясам и верхним поясам криволинейного очертания (рис.1, в); полигональные с параллельными поясами или с малым уклоном верхнего пояса трапециевидного очертания (рис.1, г); полигональные с ломаным нижним поясом (рис.1, д).  



Железобетонные фермы применяют при пролетах 18, 24 и 30 м и шаге 6 или 12 м. В железобетонных фермах в сравнении со стальными расход металла почти вдвое меньше, но трудоемкость и стоимость изготовления немного выше. Бывают 3 основных вида сборных ж.б. ферм: полигональные (многоугольные), арочные раскосные и безраскосные.



altel.kz
Больше информации на сайте рекламодателя

Подробнее
РЕКЛАМА


 

Рис.1. Конструктивные схемы железобетонных ферм


Рис.4. Железобетонная сегментная ферма пролетом 24м: 1 – ненапрягаемые стержни, 2 - горизонтальные сетки; 3 – вертикальные сетки: 4 - сварной каркас опорного узла; 5, 6 - сварные каркасы промежуточных узлов; 7 – сварной каркас верхнего пояса Расчет ферм выполняют на действие постоянных и временных нагрузок - вес покрытия и фермы, нагрузки от подвесного транспорта. В расчете учитывают неравномерное загружение снеговой нагрузкой у фонарей и по покрытию здания. Учитывают так же невыгодное для элементов решетки загружение одной половины фермы снегом и подвесным транспортом. В расчетной схеме раскосной фермы при определении усилии принимают шарнирное соединение элементов поясов и решетки в узлах. В расчетах прочности влиянием жесткости узлов фермы на усилия в элементах поясов и решетки ввиду малости можно пренебречь.  







При определении изгибающих моментов от внеузловой нагрузки верхний пояс рассматривают как неразрезную балку, опорами которой являются узлы.

Прочность сечений поясов и решетки рассчитывают по формулам для сжатых и растянутых элементов.

Арматуру опорного узла фермы на основании исследований рассчитывают по схеме, изображенной на (рис.5, а.). Площадь сечения продольной ненапрягаемой арматуры

, (1)

где N - расчетное усилие приопорной панели.

 

В узлах железобетонных ферм для надежной пере­дачи усилий от одного элемента к другому создают спе­циальные уширения — вуты, позволяющие лучше раз­местить и заанкерить арматуру решетки (рис. 13.39). Узлы армируют окаймляющими цельногнутыми стерж­нями диаметром 10... 18 мм и вертикальными поперечны­ми стержнями диаметром 6...10 мм с шагом 100 мм, объ­единенными в сварные каркасы. Арматуру элементов ре­шетки заводят в узлы, а растянутые стержни усиливают на конце анкерами в виде коротышей, петель, высаженных головок. Надежность заделки проверяют расчетом.

Опорные узлы ферм армируют дополнительной про­дольной ненапрягаемой арматурой и поперечными стержнями, обеспечивающими надежность анкеровки растянутой арматуры нижнего пояса и прочность опор­ного узла по наклонному сечению. Кроме того, чтобы предотвратить появление продольных трещин при отпус­ке натяжения арматуры, ставят специальные поперечные стержни, приваренные к закладным опорным листам, и сетки.


Пример армирования сегментной фермы пролетом 24 м приведен на рис. 13.40. Напрягаемую арматуру нижнего пояса фермы предусматривают нескольких видов: канаты класса К-7, К-10; стержневую класса А-IV, вы­сокопрочную проволоку Вр-11. Арматуру натягивают на упоры. Хомуты нижнего пояса выполняют в виде встреч­но поставленных П-образных сеток, окаймляющих на­прягаемую арматуру. В опорном узле поставлены допол­нительные продольные ненапрягаемые стержни диамет­ром 12 мм, заведенные в приопорную панель нижнего пояса, и поперечные стержни диаметром 10 мм.

 

Отрыв части опорного узла по линии АВ происходит под влиянием усилия Nsinα, действующего нормально к плоскости отрыва. Этому отрыву оказывают сопротивление усилия: в продольной напрягаемой арматуре  , в продольной ненапрягаемой арматуре  , в хомутах  . Отсюда условие прочности на отрыв:

, (2)

которое после сокращения на sinα принимает вид

, (3)

Рис. 5. К расчету узлов ферм: а - опорного узла; б - промежуточного узла

 

Здесь а - угол наклона линии АВ, соединяющей точку А у грани опоры с точкой В в примыкании нижней грани сжатого раскоса к узлу; n - число поперечных стержней, пересекаемых линий АВ (за вычетом поперечных стержней, расположенных ближе 100 мм от точки А);   - длина заделки в опорном узле за линией АВ продольной напрягаемой и ненапрягаемой арматурой;     - длина заделки, обеспечивающая полное использование прочности продольной напрягаемой и ненапрягаемой арматуры.  





Усилия в продольной арматуре

; (4)

. (5)

Усилия в хомутах

.(6)

Площадь сечения одного хомута