Файл: Основные понятия метрологии. Классификация измерений и средств измерений. Принципы и методы измерений.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.01.2024

Просмотров: 207

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
результирующей случайной погрешности



где t = 1,1 или можно брать коэффициент Стьюдента, соответствующий меньшему числу наблюдений. Если же случайные составляющие погрешности заданы доверительными границами , при одной и той же доверительной вероятности, то

Приближенная оценка погрешности прямого однократного измерения.

Для таких измерений в качестве результата принимают значение отсчета x, а оценивание погрешности производится на основе нормативных данных о свойствах используемых средств измерений. Поскольку эти данные относятся к множеству средств измерения данного типа, то у конкретного экземпляра прибора, используемого в измерении, действительные свойства могут значительно отличаться от нормированных (можно провести поверку). Тем не менее, не имея другой достоверной информации (либо не имея в ней нужды) о реальных метрологических характеристиках средства измерения, можно проводить оценку погрешности измерения на основе предельных норм, представляемых в технической документации на средства измерения. Такие оценки дают возможность оценить погрешность сверху, но для корректировки результата измерения или для введения поправок они недостаточно надежны. Общая схема следующая:
Выбрав необходимое средство измерения (определяется исходя из условий измерительной задачи), уточнив условия измерения (нормальные или рабочие), оценивают возможные дополнительные погрешности прибора (если условия рабочие) и суммируют предел допускаемой основной погрешности и дополнительные погрешности :

Таким образом находится верхняя оценка результата измерения. Методические погрешности должны быть учтены заранее, а личные (субъективные) при таких измерениях предполагаются малыми и не учитываются.

Более точная оценка погрешности может быть получена статистическим сложением (а не простым) составляющих погрешности (например, вместо можно использовать

)
Косвенные измерения

При косвенных измерениях искомое значение величины находят расчетом на основе измерения других величин, связанных с измеряемой известной зависимостью:

Поскольку каждое из измеряется с некоторой погрешностью, то задача оценивания погрешности результата сводится к суммированию погрешностей измерения аргументов. Особенностью косвенных измерений является то, что вклад отдельных погрешностей измерения аргументов в сумму погрешностей результата зависит от вида функции .

Для оценки погрешностей существенно разделение косвенных измерений на линейные и нелинейные. При линейных косвенных измерениях уравнение измерений имеет вид:


где - const при

Любые другие функции зависимости являются нелинейными.

Погрешности результата могут быть заданы своими границами , либо доверительными границами с доверительными вероятностями .

Если m<5 , то простая оценка погрешности результата может быть получена простым суммированием предельных погрешностей (без учета знака), то есть подстановкой в выражение:

Однако такая оценка является завышенной, так как такое суммирование означает, что погрешности измерения всех аргументов одновременно имеют максимальные значения и совпадают по знаку. Вероятность такого совпадения стремится к 0. Для определения более реалистичной оценки переходят к статистическому суммированию погрешностей аргументов, полагая, что в заданных границах погрешности аргументов распределены равномерно:



где - доверительные границы при доверительной вероятности P.

Нелинейные косвенные измерения характеризуется тем, что результаты измерения аргументов подвергаются функциональным преобразованиям. Как показано в теории вероятностей, любые, даже простейшие, функциональные преобразования случайной величины приводят к изменению законов их распределения.

При сложной функции отыскание закона распределения погрешности результата связано с серьезными математическими трудностями. Поэтому при нелинейных косвенных измерениях обычно ограничиваются приближенной верхней оценкой ее границ. В основе такой оценки лежит линеаризация функции и далее обработка результатов проводится как при линейном косвенном измерении.

Для полного дифференциала функции A выражение запишем как:



По определению полный дифференциал функции - это приращение функции, вызванное малыми приращениями ее аргументов. Полагая, что погрешности – это малые приращения, запишем:



Полагая, что распределения погрешностей аргументов подчиняются равномерному закону, при числе слагаемых m<5 границы погрешности определяем



А при m>5 по :



где 5>5>15>