Файл: Учебник для высших учебных заведений физической культуры Издание 2е, исправленное и дополненное.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.01.2024

Просмотров: 2066

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
преимущественно левого полушария у правшей, где на­ходятся центры речи.

В связи с различным соотношением у людей реакций, связанных с преобладанием I или II сигнальной системы, И. П. Павлов различал

49

специфически человеческие типы нервной системы: «мыслитель­ный» — с преобладанием второй сигнальной системы — и «художе­ственный» — с преобладанием первой сигнальной системы. Среди взрослых людей количество лиц с преобладанием второй сигнальной системы составляет около половины населения. Около 25% состав­ляют лица с преобладанием первой сигнальной системы и примерно 25% — лица, имеющие равновесие обеих систем. Соответственно этим типам, в настоящее время различают 2 основные формы интел­лекта человека: невербальный интеллект, отражающий природные возможности индивида манипулировать с непосредственными (осо­бенно зрительно-пространственными) раздражителями, и вербаль­ный интеллект, отражающий способность манипулировать со сло­весным материалом, что определяет характер поведенческих реак­ций, в том числе и в спорте.
5. НЕРВНО-МЫШЕЧНЫЙ АППАРАТ
У человека существует 3 вида мышц: поперечно-полосатаые ске­летные мышцы, особая поперечно-полосатая сердечная мышца и гладкие мышцы внутренних органов.
5.1. ФУНКЦИОНАЛЬНАЯ ОРГАНИЗАЦИЯ СКЕЛЕТНЫХ МЫШЦ
Скелетные мышцы человека содержат около 300 млн. мышечных волокон и имеют площадь порядка 3 м2. Целая мышца представляет собой отдельный орган, а мышечное волокно — клетку. Мышцы иннервируются двигательными нервами, передающими из центров моторные команды, чувствительными нервами, несущими в центры информацию о напряжении и движении мышц, и симпати­ческими нервными волокнами, влияющими на обменные процессы в мышце. Функции скелетных мышц заключаются в перемещении частей тела друг относительно друга, перемещении тела в пространстве (локомоция) и поддержании позы тела.

Функциональной единицей мышцы является двигательная единица, состоящая из мотонейрона спинного мозга, его аксона (двигательного нерва) с многочисленными окончаниями и иннервируемых им мышечных волокон. Возбуждение мотонейрона вызывает одновременное сокращение всех входящих в эту единицу мышечных во­локон. Двигательные единицы (ДЕ) небольших мышц содержат ма­лое число мышечных волокон (ДЕ мышц глазного яблока 3-6 воло­кон, мышц пальцев руки 10-25 волокон), а ДЕ крупных мышц туло­вища и конечностей — до нескольких тысяч (например, ДЕ икро­ножной мышцы человека — около 2000 мышечных волокон).


50

Мелкие мышцы иннервируются из одного сегмента спинного мозга, а крупные мышцы—мотонейронами 2-3 спинальных сегментов. Мотонейроны, иннервирующие одну мышцу, составляют общий мо­тонейронный пул, в котором могут находиться мотонейроны различных размеров. Большие ДЕ образованы крупными мото­нейронами, которые имеют толстые аксоны, множество концевых разветвлений и большое число связанных с ними мышечных воло­кон. Такие ДЕ имеют низкую возбудимость, генерируют высокую частоту нервных импульсов (порядка 20-50 импульсов в 1с) и харак­теризуются высокой скоростью проведения возбуждения. Они включаются в работу лишь при высоких нагрузках на мышцу. Мелкие ДЕ имеют мотонейроны небольших размеров, тонкие и мед­ленно проводящие аксоны, малое число мышечных волокон. Они легко возбудимы и включаются в работу при незначительных мы­шечных усилиях. Нарастание нагрузки вызывает активацию различ­ных ДЕ скелетной мышцы в соответствии с их размерами — от мень­ших к большим (правило Хеннемана).

Мышечное волокно представляет собой вытянутую клетку (ее диаметр около 10-100 мкм, а длина 10-12 см). В состав волокна входят его оболочка — сарколемма, жидкое содержимое — саркоплазма, ядро, энергетические центры —митохондрии, белковые депо — рибосомы, сократительные элементы — миофибриллы, а также замк­нутая система продольных трубочек и цистерн, расположенных вдоль миофибрилл и содержащих ионы Са ,— саркоплазлштический ретикулум. Поверхностная мембрана клетки через равные проме­жутки образует поперечные трубочки, входящие внутрь мышечного волокна, по которым внутрь клетки проникает потенциал действия при ее возбуждении.

Миофибриллы —это тонкие волокна (диаметр их 1-2 мкм. длина 2-2.5 мкм), содержащие 2вида сократительных белков (прото-фибрилл): тонкие нити актина и вдвое более толстые нити миозина. Они расположены таким образом, что вокруг миозиновых нитей на­ходится 6 актиновых нитей, в вокруг каждой актиновой — 3 миози­новых. Миофибриллы разделены Z-мембранами наотдельные участ­ки— саркомеры, в средней части которых расположены пре­имущественно миозиновые нити, а актиновые нити прикреплены к Z-мембранам по бокам саркомера. (Разная способность актина и ми­озина преломлять свет создает в состоянии покоя мышцы ее попереч­но-полосатый вид в световом микроскопе).

Нити актина составляют около 20% сухого веса миофибрилл. Актин состоит из двух форм белка: 1) глобулярной формы — в виде сферических молекул и 2).

палочковидных молекул тропомиозина, скрученных в виде двунитчатых спиралей в длинную цепь. На протяжении этой двойной актиновой нити каждый виток содержит по 14

51

молекул глобулярного актина (по 7 молекул с обеих сторон), наподо­бие нитки с бусинками, а также центры связывания ионов Са . В этих центрах содержится особый белок (тропонин), участвующий в образовании связи актина с миозином.

Миозин составлен из уложенных параллельно белковых ни­тей (эта часть представляет собой так называемый легкий меромиозин). На обоих концах его имеются отходящие в стороны шейки с утолщениями — головками (эта часть — тяжелый меромиозин), бла­годаря которым образуются поперечные мостики между миозином и актином.

5.2. МЕХАНИЗМЫ СОКРАЩЕНИЯ И РАССЛАБЛЕНИЯ МЫШЕЧНОГО ВОЛОКНА
При произвольной внутренней команде сокращение мышцы че­ловека начинается примерно через 0.05 с (50 мс). За это время мотор­ная команда передается от коры больших полушарий к мотонейро­нам спинного мозга и по двигательным волокнам к мышце. Подойдя к мышце, процесс возбуждения должен с помощью медиатора пре­одолеть нервно-мышечный синапс, что занимает примерно 0.5 мс. Медиатором здесь является ацетилхолин, который содержится в синаптических пузырьках в пресинаптической части синапса. Нервный им пульс вызывает перемещение синаптических пузырьков к преси­наптической мембране, их опорожнение и выход медиатора в синаптическую щель. Действие ацетилхолина на постсинаптическую мем­брану чрезвычайно кратковременно, после чего он разрушается ацетилхолинэстеразой на уксусную кислоту и холин. По мере расходо­вания запасы ацетилхолина постоянно пополняются путем его синтезирования в пресинаптической мембране. Однако, при очень частой и длительной импульсации мотонейрона расход ацетилхоли­на превышает его пополнение, а также снижается чувствительность постсинаптической мембраны к его действию, в результате чего на­рушается проведение возбуждения через нервно-мышечный синапс. Эти процессы лежат в основе периферических механизмов утомления при длительной и тяжелой мышечной работе.

Выделившийся всинаптическую щель медиатор прикрепляется к рецепторам постсинаптической мембраны и вызывает в ней явления деполяризации. Небольшое подпороговое раздражение вызывает лишь местное возбуждение небольшой амплитуды — потенциал концевой пластинки (ПКП).

При достаточной частоте нервных импульсов ПКП достигает по­рогового значения и на мышечной мембране развивается мышечный потенциал действия. Он (со скоростью 5 ) распростра­няется вдоль по поверхности мышечного волокна и заходите поперечные

52

трубочки внутрь волокна. Повышая проницаемость клеточ­ных мембран, потенциал действия вызывает выход из цистерн и тру­бочек саркоплазматического ретикулума ионов Са , которые прони­кают в миофибриллы, к центрам связывания этих ионов на молеку­лах актина.


Под влиянием Са длинные молекулы тропомиозина проворачи­ваются вдоль оси и скрываются в желобки между сферическими мо­лекулами актина, открывая участки прикрепления головок миозина к актину. Тем самым между актином и миозином образуются так называемые поперечные мостики. При этом головки миозина совершают гребковые движения, обеспечивая скольжение нитей ак­тина вдоль нитей миозина с обоих концов саркомера к его центру, т. е. механическую реакцию мышечного волокна (рис. 10).

Энергия гребкового движения одного мостика производит пере­мещение на 1 % длины актиновой нити. Для дальнейшего скольжения сократительных белков друг относительно друга мостики между актином и миозином должны распадаться и вновь образовываться на следующем центре связывания Са . Такой процесс происходит в ре­зультате активации в этот момент молекул миозина. Миозин приоб­ретает свойства фермента АТФ-азы, который вызывает распад АТФ. Выделившаяся при распаде АТФ энергия приводит к разрушению



Рис. 10. Схема электромеханической связи в мышечном волокне

На А: состояние покоя, на Б — возбуждение и сокращение

да — потенциал действия, мм — мембрана мышечного волокна,

п _ поперечные трубочки, т — продольные трубочки и цистерны с ионами

Са ,а — тонкие нити актина, м — толстые нити миозина

с утолщениями (головками) на концах. Зет-мембранами ограничены

саркомеры миофибрилл. Толстые стрелки — распространение потенциала

действия при возбуждении волокна и перемещение ионов Са из цистерн

и продольных трубочек в миофибриллы, где они содействуют образованию

мостиков между нитями актином и миозином и скольжение этих нитей

(сокращение волокна) за счет гребковых движений головок миозина.

53

имеющихся мостиков и образованию в присутствии Са