Файл: Учебник для высших учебных заведений физической культуры Издание 2е, исправленное и дополненное.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 12.01.2024
Просмотров: 2147
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
9.1. ФОРМЫ ПРОЯВЛЕНИЯ, МЕХАНИЗМЫ
И РЕЗЕРВЫ РАЗВИТИЯ СИЛЫ
Сила является одним из ведущих физических качеств спортсмена. Она необходима при выполнении многих спортивных упражнений, особенно в стандартных ациклических видах спорта (тяжелой атлетике, спортивной гимнастике, акробатике и др.).
9.1.1. ФОРМЫ ПРОЯВЛЕНИЯ МЫШЕЧНОЙ СИЛЫ
Сила мышцы — это способность за счет мышечных сокращений преодолевать внешнее сопротивление. При ее оценке различают абсолютную и относительную мышечную силу.
Абсолютная сила— это отношение мышечной силы к физиологическому поперечнику мышцы (площади поперечного разреза всех мышечных волокон). Она измеряется в Ньютонах или килограммах силы на
1 см (Н/см или кг/см ). В спортивной практике измеряют динамометром силу мышцы без учета ее поперечника.
Относительная сила— это отношение мышечной силы к ее анатомическому поперечнику (толщине мышцы в целом, которая зависит от числа и толщины отдельных мышечных волокон).
266
Она измеряется в тех же единицах. В спортивной практике для ее оценки используют более простой показатель: отношение мышечной силы к массе тела спортсмена, т. е. в расчете на 1 кг.
Абсолютная мышечная сила необходима в собственно-силовых упражнениях, где максимальное изометрическое напряжение обеспечивает преодоление большого внешнего сопротивления — при подъемах штанги максимального или околомаксимального веса, при выполнении в гимнастике стойки на кистях, переднего и заднего равновесия на кольцах и упора руки в сторону («крест») и др. Относительная мышечная сила определяет успешность перемещения собственного тела (например, в прыжках).
В зависимости от режима мышечного сокращения различают Г) статическую (изометрическую) силу, проявляемую при статических усилиях, и 2) динамическую силу — при динамической работе, в том числе так называемую взрывную силу.
Взрывная сила определяется скоростно —силовыми возможностями человека, которые необходимы для придания возможно большего ускорения собственному телу или спортивному снаряду (например, при стартовом разгоне). Она лежит в основе таких важных для спортсмена качеств как прыгучесть (при прыжках) или резкость {в метаниях, ударах). При проявлении взрывной силы важна не столько величина силы, сколько ее нарастание во времени, т.е. градиент силы. Чем меньше длительность нарастания силы до ее максимального значения, тем выше результативность выполнения прыжков, метаний, бросков, ударов.
Скоростно-силовые возможности человека в большей мере зависят от наследственных свойств организма, чем абсолютная изометрическая сила.
9.1.2. ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ РАЗВИТИЯ СИЛЫ
В развитии мышечной силы имеют значение:
1) внутримышечные факторы,
2) особенности нервной регуляции и
3) психофизиологические механизмы.
Внутримышечные факторы развития силы включают в себя биохимические, морфологические и функциональные особенности мышечных волокон.
• Физиологический поперечник, зависящий от числа мышечных волокон (он наибольший для мышц с перистым строением).
• Состав (композиция) мышечных волокон: соотношение слабых и более возбудимых медленных мышечных волокон (окислительных, малоутомляемых) и более мощных высокопороговых быстрых мышечных волокон (гликолитических, утомляемых).
267
• Миофибриллярная гипертрофия мышцы — т.е. увеличение мышечной массы, которая развивается при силовой тренировке в результате адаптационно-трофических влияний и характеризуется ростом толщины и более плотной упаковкой сократительных элементов мышечного волокна — миофибрилл. (При этом окружность плеча может достигать 80 см, а бедра — 95 см и более).
Нервная регуляция обеспечивает развитие силы за счет совершенствования деятельности отдельных мышечных волокон, двигательных единиц (ДЕ) целой мышцы и межмышечной координации. Она включает следующие факторы.
• Увеличение частоты нервных импульсов, поступающих в скелетные мышцы от мотонейронов спинного мозга и обеспечивающих переход от слабых одиночных сокращений их волокон к мощным тетаническим.
• Активация многих ДЕ — при увеличении числа вовлеченных в двигательный акт ДЕ повышается сила сокращения мышцы.
• Синхронизация активности ДЕ— одновременное сокращение возможно большего числа активных ДЕ резко увеличивает силутяги мышцы.
• Межмышечная координация — сила мышцы зависит от деятельности других мышечных групп: сила мышцы растет при одновременном расслаблении ее антагониста, она уменьшается при одновременном сокращении других мышц и увеличивается при фиксации туловища или отдельных суставов мышцами-антагонистами. Например, при подъеме штанги возникает явление натуживания (выдох при закрытой голосовой щели), приводящее к фиксации мышцами туловища спортсмена и создающее прочную основу для преодоления поднимаемого веса.
Психофизиологические механизмы увеличения мышечной силы связаны с изменениями функционального состояния (бодрости, сонливости, утомления), влияниями мотиваций и эмоций, усиливающих симпатические и гормональные воздействия со стороны гипофиза, надпочечников и половых желез; биоритмов.
Важную роль в развитии силы играют мужские половые гормоны (андрогены), которые обеспечивают увеличение синтеза сократительных белков в скелетных мышцах, Их у мужчин в 10 раз больше, чем у женщин. Этим объясняется больший тренировочный эффект развития силы у спортсменов по сравнению со спортсменками, даже при абсолютно одинаковыхтренировочных нагрузках.
Открытие эффекта андрогенов привело к попыткам ряда тренеров и спортсменов использовать для развития силы аналоги половых
268
гормонов — анаболические стероиды. Однако, вскоре обнаружились пагубные последствия их приема. В результате действия анаболиков у спортсменов-мужчин подавляется функция собственных половых желез (вплоть до полной импотенции и бесплодия), а у женщин-спортсменок происходит изменение вторичных половых признаков по мужскому типу (огрубение голоса, изменение характера оволосения) и нарушается специфический биологический цикл женского организма (возникают отклонения в длительности и регулярности месячного цикла, вплоть до полного его прекращения и подавления детородной функции). Особенно тяжелые последствия наблюдаются у спортсменов-подростков. В результате подобные препараты были отнесены к числу запрещенных допингов.
Попытки заставить мышцу развивать мощные тетанические сокращения с помощью электростимуляции также не привели к успеху. Эффект воздействия прекращался через 1 -2 недели, а искусственно вызванная способность развивать сильные сокращения не могла полноценно использоваться, так как не включалась в необходимые двигательные навыки.
9.1.3. ФУНКЦИОНАЛЬНЫЕ РЕЗЕРВЫ СИЛЫ
У каждого человека имеются определенные резервы мышечной силы, которые могут быть включены лишь при экстремальных ситуациях (чрезвычайная опасность для жизни, чрезмерное психоэмоциональное напряжение и т.п.).
В условиях электрического раздражения мышцы или под гипнозом можно выявить максимальную мышечную силу, которая окажется больше той силы, которую человек проявляет при предельном произвольном усилии — так называемой максимальной произвольной силы. Разница между максишыъной мышечной силой и максимальной произвольной силой называется
д е ф и ц и т о м м ы ш е ч н о й с и л ы. Этавеличинауменьшаетсявходе силовой тренировки, так как происходит перестройка
морфофунк-циональных возможностей мышечных волокон и механизмов их произвольной регуляции.
У систематически тренирующихся спортсменов наряду с эконо-мизацией функций происходит относительное увеличение общих и специальных физиологических резервов. Приэтом первые реализуются через общие для различныхупражнений проявления физических качеств, а вторые — в виде специальных для каждого вида спорта навыков и особенностей силы, быстроты и выносливости.
К числу общих функциональных резервов мышечной силы отнесен ы следующие факторы:
269
• включениедополнительныхДЕвмышце;
• синхронизация возбуждения ДЕ в мышце;
• своевременное торможение мышц-антагонистов;
• координация (синхронизация) сокращений мышц-агонистов;
• повышение энергетических ресурсов мышечныхволокон;
• переход от одиночных сокращений мышечных волокон к тетаническим;
• усиление сокращения после оптимального растяжения мышцы;
• адаптивная перестройка структуры и биохимии мышечных волокон (рабочая гипертрофия, изменение соотношения объемов медленных и быстрых волокон и др.).
9.2. ФОРМЫ ПРОЯВЛЕНИЯ, МЕХАНИЗМЫ И РЕЗЕРВЫ РАЗВИТИЯ БЫСТРОТЫ
Значительная часть спортивных упражнений не только требует максимально возможного развития скорости движений, но и происходит в условиях дефицита времени. Достижение успеха в подобных упражнениях возможно лишь при хорошем развитии физического качества быстроты.
9.2.1. ФОРМЫ ПРОЯВЛЕНИЯ БЫСТРОТЫ
Быстрота— это способность совершать движения в минимальной для данных условий отрезок времени. Различают комплексные и элементарные формы проявления быстроты.
В естественных условиях спортивной деятельности быстрота проявляется обычно в комплексных формах, включающих скорость двигательных действий и кратковременность умственных операций., и в сочетании с другими качествами.
К элементарным формам проявления быстроты относятся следующие.
• Общая скорость однократных движений (или время одиночных действий) — например, прыжков, метаний.
• Время двигательной реакции — латентный (скрытый) период простой (без выбора) и сложной (с выбором) сенсомоторной реакции, реакции на движущийся объект (имеющее особенное значение в ситуационных упражнениях и спринте).
• Максимальный темп движений, характерный, например, для спринтерского бега.
Оценка времени двигательной реакции (ВДР) производится от момента подачи сигнала до ответного действия. Она является одним из наиболее распространенных показателей при тестировании быстроты.
270
Это время чрезвычайно мало для передачи возбуждения от рецепторов в нервные центры и от них к мышцам. В основном оно затрачивается на проведение и обработку информации в высших отделах мозга и поэтому служит показателем функционального состояния центральной нервной системы.
У нетренированных лиц величина ВДР при движении пальцем в ответ на световой сигнал укорачивается с возрастом от 500-800 мс у детей 2-3-х лет до 190 мсу взрослых людей. Для спортсменов характерны более короткие величины этой реакции: в среднем, 120 мс у спортсменов и 140 мс — у спортсменок. У высококвалифицированных представителей ситуационных видов спорта и бегунов на короткие дистанции эти величины еще меньше — порядка 110 мс, в отличие от бегунов-стайеров, показывающих 200-300 мс и более.
При выполнении специализированных упражнений ВДР у
высококвалифицированных спортсменов также очень невелико. Так, стартовое время (от выстрела стартового пистолета до ухода со старта) у бегунов-спринтеров, участников Олимпийских игр и чемпионатов мира, составляет, в среднем, при беге на 50-60 м 139 мс у мужчин и 159 мсу женщин, при беге на 100 м, соответственно, 150-160 мс и 190 мс. Знаменитый спринтер Бен Джонсон мог уходить со старта через 99,7 мс. По теоретическим расчетам ВДР, равное 80-90 мс, вообще составляет для человека предел его функциональных возможностей.
Факторами, влияющими на ВДР, являются врожденные особенности человека, его текущее функциональное состояние, мотивации и эмоции, спортивная специализация, уровень спортивного мастерства, количество воспринимаемой спортсменом информации.
Другим простым показателем быстроты является максимальный темп постукиваний пальцем за короткий интервал времени — 10 с, так называемый теппинг-тест. Взрослые лица производят 50-60 движений за 10 с, спортсмены ситуационных видов спорта и спринтеры — порядка 60-80 движений и более.