Файл: Подберите из учебников математики 4 класса для начальной школы (умк по выбору) различные задания (не менее 10 заданий), в ходе которых учащиеся учатся выполнять различные действия и операции с именованными числами.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 18.01.2024

Просмотров: 442

Скачиваний: 19

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.



- А как можно назвать эти стороны, которые находятся напротив друг друга?

- Эти стороны, находящиеся напротив друг друга, называются противоположными.

- Измерьте стороны прямоугольника, находящиеся друг напротив друга. Сделайте вывод.


- Как доказать, что стороны, находящиеся друг напротив друга одинаковые по длине, если нет линейки?


- Какой вывод можно сделать?

- Дайте определение прямоугольника по его свойствам.

Применение полученных знаний.

1.Распознавание прямоугольников в реальной жизни

- Назовите предметы, которые имеют форму прямоугольника.

2.Объяснение разницы между прямоугольником и ромбом, прямоугольником и трапецией.

- Дайте названия фигурам и сравните их.

3.Составление алгоритма построения прямоугольника.


- Как мы будем строить прямоугольник?

Построение прямоугольника на листе, используя изученные свойства.

- Сейчас я предлагаю вам выполнить задание, в котором вы сможете применить новые знания.

- Надо достроить треугольник до прямоугольника.

Задание №4

Изучив методическую литературу, составьте классификацию простых задач, с решением которых знакомятся учащиеся начальной школы.

Ответ:

В методическом отношении удобна следующая классификация простых задач: деление задач на группы в зависимости от тех понятий, которые формируются при их решении. С этой точки зрения выделяют три группы задач.

1-я группа - простые задачи на усвоение конкретного смысла арифметических действий.

В эту группу входят такие задачи:

1) Нахождение суммы двух чисел.


Маляр покрасил в одной квартире 6 дверей, а в другой 4. Сколько дверей покрасил маляр?

2) Нахождение остатка.


Школьники сделали 6 кормушек. 2 кормушки они повесили в школьном саду. Сколько кормушек им осталось повесить?

3) Нахождение суммы одинаковых слагаемых (произведения).


Школьники посадили в парке 4 ряда березок по 5 штук в ряду. Сколько березок они посадили?

4) Деление на равные части.


В 3 палатках жили 24 туриста, в каждой палатке поровну. Сколько туристов жили в каждой палатке?

5) Деление по содержанию.

Каждая бригада школьников окопала по 8 яблонь, а всего школьники окопали 24 яблони. Сколько всего бригад школьников выполняли эту работу?


2-я группа - простые задачи на усвоение связи между компонентами и результатами арифметических действий.

В эту группу входят такие задачи:

1) Нахождение первого слагаемого по известным сумме и второму слагаемому.


У кормушки было несколько снегирей, к ним прилетели 6 синиц. И их стало всего 9. Сколько снегирей было у кормушки?

2) Нахождение второго слагаемого по известным сумме и первому слагаемому.


У кормушки было 3 снегиря, к ним прилетели несколько синиц и их стало 9. Сколько синиц прилетело?

3) Нахождение уменьшаемого по известным вычитаемому и разности.

Школьники сделали несколько скворечников. Когда 2 скворечника они повесили на дерево, то у них осталось 4 скворечника. Сколько скворечников сделали школьники?

4) Нахождение вычитаемого по известному уменьшаемому и разности.

Школьники сделали 6 скворечников. Когда несколько скворечников они повесили на дерево, то у них осталось еще 4 скворечника. Сколько скворечников повесили школьники?

5) Нахождение первого множителя по известным произведению и второму множителю.

Неизвестное число умножили на 8 и получили 32. Найти неизвестное число.

6) Нахождение второго множителя по известным произведению и первому множителю.

9 умножили на неизвестное число и получили 27. Найти неизвестное число.

7) Нахождение делимого по известным делителю и частному.

Неизвестное число разделили на 9 и получили 4. Найти неизвестное число.

8) Нахождение делителя по известным делимому и частному.

24 разделили на неизвестное и получили 6. Найти неизвестное число.

3-я группа - простые задачи, раскрывающие новый смысл арифметических действий: понятия разности и кратного отношения.

В эту группу входят такие задачи, связанные с понятием разности:

1) Разностное сравнение чисел или нахождение разности двух чисел (1 вид).


У Миши было 8 шариков, а у Коли 5 шариков. На сколько у Миши шариков больше, чем у Коли?

2) Разностное сравнение чисел или нахождение разности двух чисел (2 вид).


У Тани 10 книг, а у Оли 8 книг. На сколько книг у Оли меньше?

3) Увеличение числа на несколько единиц (прямая форма).


На первой тарелке было 7 груш, а на второй на 3 груши больше. Сколько груш на второй тарелке?

4) Увеличение числа на несколько единиц (косвенная форма).


У Миши 4 фломастера, это на 8 фломастеров меньше, чем у Тани. Сколько фломастеров у Тани?

5) Уменьшение числа на несколько единиц (прямая форма).


Школьники собрали с первой грядки 23 кг моркови, со второй на 3 кг меньше. Сколько килограммов моркови собрали со второй грядки?



6) Уменьшение числа на несколько единиц (косвенная форма).


В колхозе было 12 тракторов, это на 4 больше, чем комбайнов. Сколько комбайнов было в колхозе?

В эту группу также входят простые задачи, связанные с понятием кратного отношения.

1) Кратное сравнение чисел или нахождение отношения двух чисел (1вид).


На проводе 6 ласточек и 2 воробья. Во сколько раз ласточек больше, чем воробьев?

2) Кратное сравнение чисел или нахождение отношения двух чисел (2 вид).


В столовой израсходовали 8 кг муки и 24 кг крупы. Во сколько раз меньше израсходовали муки, чем крупы?

3) Увеличение числа в несколько раз (прямая форма).


В одном куске 6 м проволоки, а в другом в 2 раза больше. Сколько метров проволоки во втором куске?

4) Увеличение числа в несколько раз (косвенная форма).


У брата было 6 простых открыток, их было в 2 раза меньше, чем цветных открыток. Сколько цветных открыток было у брата?

5) Уменьшение числа в несколько раз (прямая форма).


В пруду плавали 9 гусей, а уток в 3 раза меньше. Сколько уток плавало в пруду?

6) Уменьшение числа в несколько раз (косвенная форма).


Длина первой доски 18 дм, это в 3 раза больше длины второй доски. Какова длина второй доски?

Простые задачи на сложение и вычитание изучаются в 1 классе в связи с изучением соответствующих действий, а задачи на умножение и деление - во 2 классе.

Задание №5

Выберите из учебника математики 1 класса задания (не менее 6 заданий), подготавливающие младших школьников к введению понятия «арифметическая задача».

Ответ:


1.Положите 6 морковок, затем еще 3. Сколько всего морковок вы положили?


2.В одной вазе 7 цветов, в другой — 3. Сколько цветов в обеих вазах?


3.В саду посадили 3 вишни и 1 яблоню. Сколько всего деревьев посадили в саду?


4.У Зайчика в ведре 4 морковки, еще 2 морковки он сорвал с грядки. Сколько морковок у Зайчика?


5.У Васи и Пети три машинки, мама подарила им еще одну, сколько машинок у мальчиков?


6.В расписании стояло 3 урока, но физкультуру отменили, сколько уроков осталось у ребят?

Задание№6

Прочитайте задачу:«В школьную столовую привезли 6 кг лимонов, яблок на 24 кг больше, чем лимонов, а груш на 12 кг меньше, чем яблок. Сколько килограммов груш привезли в школьную столовую?»

Вопросы:


¾ Каким способом (синтетическим, аналитическим или аналитико-синтетическим) лучше проводить разбор этой задачи?


¾ Покажите методику работы над арифметической задачей на примере данной задачи (этапы работы над задачей смотрите в лекции).

Ответ:

Аналитико-синтаксическим

Лимоны-6кг

Яблоки-?,на 24кг>

Груши-?,на 12кг<

У вопроса про груши мы обводим главный вопрос в кружок.

От яблок к лимонам проводим квадратную стрелку.

От груш к яблокам проводим квадратную стрелку.

1)24+6=30(кг)-яблоки.

2)30-12=18(кг)

Ответ:18 кг груш привезли в школьную столовую.

Задание №7

Разработайте контрольно-измерительные материалы для диагностики результатов обучения младших школьников по теме «Дроби». Вид контрольно-измерительных материалов по выбору. В работе должно быть не менее 10 заданий.

Ответ:

1.Укажи дробь:

А) 6 Б) 006 В) Г) Х

2. В дроби над чертой пишется:

А) числитель Б) делитель В) знаменатель Г) множитель

3. В дроби под чертой пишется:

А) множитель Б) знаменатель В) числитель Г) делитель

4. Укажи наименьшую дробь:

А) Б) В) Г)

5. Укажи наибольшую дробь:

А) Б) В) Г)

6. При сложении и получается:

А) Б) В) Г)

7. При вычитании - получается:

А) Б) В) 4 Г) 16

8. от числа 48 – это:

А) 60 Б) 4 В)36 Г) 40

9. Укажи целое, если равна 8:

А) 1 Б) 17 В) 18 Г) 72

10. часа составляет:

А) 10минут Б) 12 минут В) 15 минут Г) 30 минут

11. метра составляет:

А) 1 дм Б) 1 см В) 1 мм Г) 10 дм

12. Чтобы найти от 56, надо:

А) 56 х 4 : 3 Б) 56 : 4 - 3 В) 56 : 4 +3 Г) 56 : 4 х 3

13. Чтобы найти число, которого равны 42, надо:

А) 42 х2 : 3 Б) 42 : 3 + 2 В) 42 : 2 х 3 Г) 42 – 2 + 3.

Задание №8

Изучите конспект урока.

Урок математики в 4 классе по теме «Доли и дроби».

Цель урока: дать общее представление о долях, научить учащихся называть, записывать и сравнивать доли

Задачи урока:

- обучающие – ввести новое понятие «доля числа», учить определять долю числа, записывать дроби, познакомить с терминами «доля», «дробь», «числитель», «знаменатель»;

- развивающие – развивать логическое мышление, математическую речь, навыки устного счета, внимание, память, мышление;

- воспитывающие – воспитывать коллективизм, аккуратность.

Ход урока

1. Знакомство с темой урока.

– Людям часто приходится делить целое на доли. А помните известный мультик «Апельсин» Посмотрим, как животные делили апельсин. Смотрите внимательно, после просмотра я задам вам вопросы.

- Как в песенке, животные называют равные части? (Дольки).

– Кто из вас был внимательным? Сколько долек было в апельсине? (Пять долек).

– Сколько долек поучил каждый? (Одну дольку апельсина).


- Как вы думаете, апельсин был разделён на равные части? (Да).

- Как по-другому, можно назвать эти равные части? (Доли).

2. Постановка учебных задач.

- Как на языке математики назвать и записать, какую долю (часть) апельсина получил каждый из животных? ( Не знаем)

- Что, на ваш взгляд, нам следует узнать, чему научиться? (Научиться записывать, называть и сравнивать доли).

- В результате совместных рассуждений, мы определили цель урока. (Научиться записывать, называть и сравнивать доли).

3. Работа над формированием понятий «Доли» и «Дроби».

- Давайте, определим, что же называют долями? Для этого еще раз вспомним, как животные делили апельсин

- Сколько частей досталось каждому животному? ( По одной части).

- Что можно сказать про каждую из частей? Какие это части? (Равные).

- Значит, каждому досталось по одной равной части от целого апельсина.

- Сделайте вывод, что такое доля. (Доля – это одна или несколько равных частей целого.)

(На доске появляется запись: 1 часть из 5).

В математике пишут короче: 1/5. Для записи понадобится 2 клеточки, между ними проводим черту. Число под чертой показывает, на сколько равных частей мы разделили предмет, а над чертой – сколько таких частей взяли. Читаем запись, запишите.

- Когда мы «делим» натуральные числа, то используем знак (:).

- Но в математике есть еще один знак деления, он называется, «дробная черта» - соответственно числа, записанные с этим знаком, называются дробными.

- Кто догадался, как называется данная запись? (Дробь).

- Верхняя часть дроби называется числителем, а нижняя – знаменателем.

- Что обозначает знаменатель в записи дроби? (На сколько частей разделили предмет).

- Что обозначает числитель? (Сколько частей взяли).

4. Отработка умения находить часть от целого и обозначать её дробью. Сравнение дробей.

Вопросы:

¾ Разработайте задания для 4 этапа урока (работа с количеством заданий – не менее 6 заданий).


¾ Какие вопросы можно предложить учащимся на этапе рефлексии?

Ответ:

Задания для 4 этапа урока:


1. В столовой испекли 120 пирожков. Продали ¼ всех пирожков. Сколько пирожков осталось?


2. Таня съела ½ конфет из коробки. Это 15 конфет. Сколько конфет было в коробке?


3. В стае было 10 молодых птенцов. Это ¼ от всех птиц в стае. Сколько птиц в стае?

4.Запиши в порядке

А) возрастания:

Б) убывания:

5.Сравни:

и

6. Реши задачи: