Файл: 2 Классификация датчиков температуры Датчик температуры.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 03.02.2024

Просмотров: 36

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Оптоволоконные пирометры


  • Оптоволоконные пирометры работают по такому же принципу как и традиционные инфракрасные пирометры. Разница состоит лишь в том, что световой поток транспортируется к детектору по оптоволоконному кабелю, который может быть изогнут в произвольной форме. Это свойство позволяет проводить измерения в труднодоступных местах или когда измеряемая поверхность находится не в прямом поле зрения. Кроме того, оптоволоконный кабель неподвержен влиянию сильных электромагнитных полей, устойчив к большим давлениям или вакууму, а также имеет максимальную температуру эксплуатации до 200 °C. Одновременным и плюсом и минусом оптоволоконных пирометров является фиксированный фокус. Плюс состоит в том, что можно выбрать модель пирометра с очень малым диаметром измеряемого пятна – вплоть до 0,1 мм, минус – в том, что вы обязаны установить пирометр точно на указанной дистанции от измеряемой поверхности

  • Кремниевые датчики температуры

  • Их работа основана на зависимости сопротивления полупроводника «кремний» от температуры. Рабочих диапазон данных приборов находится в пределах -50°С до +150°С., в котором они показывают отличные эксплуатационные характеристики. У кремниевых датчиков температуры нет проблем с калибровкой, а также с совместимостью с различными типами выходных интерфейсов. Идеально подходя для промера температуры внутри электронной техники. Рабочий диапазон жидкостных и газовых термометров широк — от -200°С до +500°С. Наиболее часто данный тип датчиков температур применяется для визуального контроля в холодильном оборудовании и нагревательных приборах.

  • Интегральные термостаты

  • Следующую группу датчиков температуры составляют интегральные термостаты. Эта группа представлена четырьмя сериями: LM26, LM27, LM56 и LM66. Эти серии, кроме LM56, имеют заводские установки - величину пороговой температуры, по достижении которой выходной сигнал меняет свое логическое состояние. Рассмотрим подробнее работу термостата LM56, который позволяет задавать температуру срабатывания. Этот термостат содержит термосенсор (так же, как LM60), источник опорного напряжения 1,25 В и два компаратора с предустановленным температурным гистерезисом. Встроенный стабилизатор напряжения обеспечивает работу этого термостата в диапазоне от 2,7 до 10 В. Потребляемый ток составляет менее 200 мкА, поэтому данный термостат относится к разряду малопотребляющих. Внутренний термосенсор дает на выходе 6,2 мВ на градус. Смещение выходного напряжения составляет 395 мВ. Три внешних резистора задают уровни для двух компараторов.

  • Термостаты с возможностью установки 2 контролируемых температур с помощью 3 внешних резисторов.



  • Схема электрическая функциональная термостата


Так же датчики температуры различают по чувствительному элементу.



Самая распространенная конструкция – так называемая «свободная от напряжения спираль» (Strain-free). Вариации основного дизайна заключаются в размерах деталей и материалах, используемых для герметизации корпуса ЧЭ. Для различных диапазонов температур используются разные виды глазури.

ЧЭ представляет собой платиновую спираль, четыре отрезка которой укладываются в каналы трубки из оксида алюминия и засыпаются мелкодисперсным порошком из оксида алюминия высокой чистоты. Таким образом, обеспечивается изоляция витков спирали друг от друга, амортизация спирали при термическом расширении и вибропрочность. Герметизация концов ЧЭ проводится с помощью цемента, приготовленного на основе оксида алюминия, или специальной глазури.

Вторая конструкция – это новая разработка, которая используется в ЧЭ значительно реже из-за высокой стоимости. Так называемая полая конструкция «hollow annulus». Эта конструкция применяется на особо важных объектах, в атомной промышленности, т.к. обладает повышенной надежностью и стабильностью метрологических параметров.



Чувствительный элемент наматывается на поверхность полого металлического цилиндра, изолированную слоем оксида алюминия, образованным способом горячего распыления. Для изготовления цилиндра используется специальный металл, температурный коэффициент расширения которого очень близок к температурному коэффициенту платины. После специальных процедур отжига и обработки поверхности платины изолирующим слоем оксида алюминия ЧЭ вставляется в тонкую металлическую трубку, которая герметизируется с обоих концов. Коэффициент тепловой инерции такого элемента составляет около 350 мс, для погружаемого ЧЭ, до 11 с для ЧЭ, монтированного в корпус термометра. Недостатком данной конструкции, препятствующим ее широкому распространению в промышленности, является высокая стоимость ЧЭ.

Пленочные чувствительные элементы типа “thin-film”

Рис.

Пленочный ЧЭ изготавливается нанесением тонкого слоя платины на керамическую подложку. Обычно слой имеет толщину порядка 10-8 см. Слой платины сверху покрывается эпоксидным или стеклянным изоляционным слоем. Технология изготовления освоена многими зарубежными фирмами, в настоящее время пленочный платиновый ЧЭ – это самый дешевый и самый широко продаваемый сенсор. Большим преимуществом является малый размер и масса ЧЭ, это позволяет устанавливать такие ЧЭ в миниатюрные корпуса и получать быструю скорость реагирования на изменение температуры объекта. Благодаря малым размерам, пленочные ЧЭ могут изготавливаться с повышенным номинальным сопротивлением. Уже разработаны и производятся ЧЭ с сопротивлением 1000 Ом. Это позволяет значительно снизить влияние сопротивления выводов при подключении по 2-х проводной схеме. По стабильности пленочные ЧЭ все еще уступают проволочным, но их технология постоянно совершенствуется, и в последнее время отчетливо наблюдается прогресс в повышении стабильности сопротивления ЧЭ и расширении температурного диапазона.


2.2. Среди огромного разнообразия предложенных датчиков температуры, для рассмотрения конкретного, я выбираю терморезисторы типа ММТ-4 и КМТ-4.

Терморезистор - это устройство, сопротивление которого меняется с температурой. Правда, надо заметить, что не все устройства, изменяющие сопротивление с температурой, называются терморезисторами. Например, резистивные термометры, которые изготавливаются из маленьких катушек витой проволоки или из напыленных металлических плёнок, хотя их параметры и зависят от температуры, однако, работают не так, как терморезисторы. Обычно термин «терморезистор» применяется по отношению к чувствительным к температуре полупроводниковым устройствам. Терморезисторы с отрицательным ТКС изготавливаются из полупроводникового материала – спеченной керамики, изготовленной из смеси оксидов металлов. Терморезисторы широко применяются везде, и мы встречаемся с ними каждый день: на них основаны системы противопожарной безопасности, системы измерения и регулирования температуры, теплового контроля, схемы температурной компенсации, измерения мощности ВЧ. Также применение терморезисторы находят в промышленной электронике и бытовой аппаратуре, в медицине, метеорологии, в химической и других отраслях промышленности.

Выбранные терморезисторы типов ММТ-4 и КМТ-4 заключены в металли­ческие капсулы и герметизированы, благодаря чему они могут быть использованы в условиях любой влажности и даже в жидкостях, не являющихся агрессивными относительно корпуса терморезистора.



 
Устройство терморезисторов.

 Температурная зависимость сопротивления является главной характеристикой терморезисторов, в значительной степени определяющей остальные характеристики этих изделий. Естественно, она аналогична температурной зависимости удельного сопротивления полупроводника, из которого изготовлен данный терморезистор.

Измерения показывают, что температурная зависимость сопротивления большинства типов отечественных терморезисторов с отрицательным ТКС с достаточной для практики точностью во всем рабочем интервале температур или в его части аппроксимируется  выражением,

(1)

где RT – величина сопротивления терморезистора при температуре Т, К,


постоянная  зависит от физических свойств материала и габаритов терморезистора (l – расстояние между электронами в см и S – площадь поперечного сечения полупроводникового элемента терморезистора в см2);

постоянная B зависит от физических свойств материала и может иметь одно или два значения в интервале рабочих температур.

Прологарифмировав, ,получим

(2)

Это выражение в координатах lg R и  представляет уравнение прямой, что значительно облегчает определение интервала температур, в котором формула с необходимой точностью аппроксимирует действительную зависимость RT(T). По результатам измерений RT и T строят график зависимости.

(3)

Если через полученные экспериментально точки можно провести прямую, то считают, что в данном интервале температур выражение для RT справедливо.

Для практических расчетов удобно исключить постоянную A. Написав формулу для RT для двух температур T2 и T1 и разделив одно на другое, получим:

. (4)

Из этой формулы можно рассчитать величину сопротивления терморезистора при любой температуре T2 (в интервале рабочих температур), зная значение постоянной B и сопротивление образца при какой-то температуре T1.

Величина B определяется экспериментально измерением сопротивления терморезистора при двух температурах T1 и T2. Логарифмируя предыдущее выражение, легко получить,

(5)

где ,

а .

Размерность B – градусы Цельсия или Кельвина. B – это коэффициент температурной чувствительности. Если определить ТКС терморезистора α как это обычно принято:

, (6)

то из
 следует, что

(7)

Для позисторов температурные зависимости сопротивления, снятые в широких интервалах температур, имеют сложный характер. При достаточно низких и высоких температурах сопротивление уменьшается при увеличении температуры по закону, близкому к экспоненциальному. В промежуточной области сопротивление R резко возрастает при повышении температуры. Крутизной графика, а, следовательно, и величиной ТКС, можно управлять в широких пределах различными технологическими приемами.

Итак, терморезисторы изготавливаются из материала, изменяющего свое сопротивление с изменением температуры в соответствии с перечисленными выше основными зависимости R = f(T). В терморезисторах с отрицательным ТКС полупроводниковый материал – спеченная керамика, которой придают различные форму и размеры. Ее изготавливают из смеси оксидов металлов, таких, как Mn, Ni, Co, Cu, Fe. Изменяя состав материала и размеры терморезистора, можно получить сопротивления от 1 до 106 Ом при комнатной температуре и ТКС от -2 до 6,5% на 1oC.

Терморезисторы, как уже было сказано, изготавливаются разных размеров: от бусинок диаметром 0,2 мм, дисков и шайб диаметром 3-25 мм до стержней диаметром 12 и длиной до 40 мм. Бусинковые терморезисторы можно заливать стеклом, помещать в стеклянные или пластмассовые оболочки или в транзисторные корпуса. Дисковые защищают чаще изоляционными пленками из лака или эпоксидных смол.



Температурная характеристика рис.

На графике: (а) – терморезистор с отрицательным ТКС, (б) – с положительным.

Температурная характеристика – зависимость R(T), снимающаяся в установившемся режиме.

2.3.Сведения о терморезисторах типа ММТ-4 и КМТ-4.

Масса: не более 0,6 г

Диапазон номинальных сопротивлений:

  КМТ-4: 22∙103-1∙106 Ом

  ММТ-4: 1∙103-220∙103 Ом

Примечание: промежуточные значения номинальных сопротивлений соответствуют ряду Е6 с допуском ±20%.

Максимальная мощность рассеяния:

  КМТ-4: 1000 мВт

  ММТ-4:  600 мВт

Температурный коэффициент сопротивления:

  КМТ-4:  -(4,2-8,4) %/°C

  ММТ-4:  -(2,4-5,6) %/°C

 Коэффициент температурной чувствительности:

  КМТ-4: 3600-7200 К

  ММТ-4: 2060-4300 К

Коэффициент рассеяния: 5 мВт/°C

Коэффициент энергетической чувствительности: