ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 08.04.2024
Просмотров: 44
Скачиваний: 0
2.8. Ковалентная (или объединённая) химическая связь- образующаяся за счет объединения одной или нескольких электронных пар, примерно одинаково сильно взаимодействующих с ядрами обоих соединяемых атомов. Есв 100-1000 кДж/моль. Образуется между атомами элементов электоотрицательности которых одинаковы (неполярная) или различаются не слишком сильно (полярная): Н2, F2, НF, СН4, СО2, Н 2О, NН3.Насыщаемость. Валентные электроны, участвующие в образовании ковалентной связи не могут участвовать в образовании дополнительных связей. Направленность связи или пространственная конфигурация объясняется с учётом гибридизации, т.е. смешения различного типа атомных орбиталей с возникновением того же числа гибридных орбиталей одинаковых по форме и энергии: тип молекулы АВ2 _(где А- центральный атом) sp1 тип гибридизации, угол связи 180◦, пространственная конфигурация линейная, тип молекулы АВ3 - sp2 - 120, треугольная, тип молекулы АВ4 - sp3 - 109, тетраэдрическая, тип молекулы АВ5 - sp3d – тригональная бипирамида,тип молекулы АВ6 sp3 d2 – октаэдрическая. Кратность ковалентной связи характеризуется числом общих электронных пар между соединяемыми атомами: одна пара – простая (ординарная) связь (всегда σπ), Две пары – двойная (σ и π), три – тройная (σ и две π). Ковалентная связь (рисунки):
|
|||
ординарная |
двойная |
тройная |
донорно-акцепторная |
2.9. Ионная связь – сильное взаимодействие общей электронной пары с ядром только одного из соединяемых атомов, что приводит к образованию электростатически притягивающихся разноимённо заряженных ионов..Электрическое поле иона имеет сферическую симметрию, катион взаимодействует со всеми анионами, находящимися поблизости, т.е. ионная связь не обла- дает направленностью и насыщаемостью. Металлическая связь – между атомами металлов (в узлах решётки атомы и катионы металла между которыми перемещаются обобществленные электроны или «электронный газ»). Характерна для твёрдых и расплавленных металлов, для газообразных – ковалентная. 2.10. Межмолекулярное взаимодействие (Межмолекулярные взаимодействия): ион-ионное – между противоположно заряженными ионами, Есв=140-460 кДж/моль, увеличивается с ростом зарядов ионов и уменьшением их радиуса; ион-дипольное – между ионом и полярной молекулой (или полярной группой с постоянным дипольным моментом μ), Есв=40-140 кДж/моль, увеличивается с ростом зарядов и уменьшением их радиуса; диполь-дипольное (ориентационное) – между полярными молекулами, обладающими постоянным дипольным моментом, Есв=2-4 кДж/моль. индукционное – между неполярной молекулой и ионом или молекулой с постоянным ионом, Есв=1-2 кДж/моль; дисперсионное - между неполярными молекулами, движение электронов в молекуле и колебания ядер вызывают появление в молекуле мгновенного диполя, под действием которого в соседней молекуле индуцируется также мгновенный диполь, Есв<2 кДж/моль. Ван дер Ваальсовы силы (ван-дер-ваальсово взаимодействие) – диполь-дипольные, индукционные и дисперсионные взаимодействия. Водородная связь – между атомом водорода и электроотрицательными атомами F, О, N (чаще всего другой молекулы), Есв=10-40 кДж/моль. Наличие водородной связи отражается на физических свойствах веществ (температуры плавления, кипения, вязкости, плотности, растворимости). Гидрофильно-гидрофобное взаимодействие - ион-дипольное или диполь-дипольное взаимодействие, когда один из типов молекул имеет сродство к воде, второй – не имеет. |
2.11. Агрегатное состояние - проявление взаимодействия между частицами вещества. В твердом состоянии расстояния между частицами вещества сопоставимы с размерами самих частиц, что обеспечивает их сильное взаимодействие и ограниченное движение (колебание, вращение).
В зависимости от степени упорядоченности частиц твёрдые вещества могут быть кристаллическими (строгая повторяемость элементарной ячейки, ближний и дальний порядок) и аморфными (бесформенными, стеклообразными, переохлаждёнными жидкостями). Многие кристаллы обладают анизотропностью – неодинаковость некоторых свойств вещества по разным направлениям. Аморфные вещества изотропны – т.е. одинаковы по свойствам во всех направлениях.
Жидкое состояние – как в твёрдом состоянии частицы из-за достаточно сильного взаимодействия удерживаются вместе в определённом объеме, но для их взаимного расположения характерен только ближний порядок в небольших постоянно меняющихся ассоциатах или кластерах (время их жизни 10-5 - 10-10 с), свободный объем, доступный для поступательного движения частиц около 3%, поэтому жидкости практически несжимаемы. Жидко-кристаллическое состояние характеризуется текучестью жидкостей и анизотропностью кристалла, возможно для молекул со стержненобазной или дискообразной формой с сильными межмолекулярными взаимодействиями. Парообразное, газообразное и плазменное – сильно разряженные состояния, с доступным для поступательного движения частиц объёмом более 99,8%. Газ - однородная система, пар – неоднородная, смесь из отдельных молекул и их неустойчивых ассоциатов.
Плазма - состояние вещества при сверхвысоких температурах: тысячи градусов Цельсия – холодная плазма; сотни тысяч – горячая плазма.
Тема 2
2.13. Виды дисперсных систем: грубая, коллоидные и истинные (молекулярные и ионные) растворы. Растворы могут быть в зависимости от размера частиц, мм (10-6): ионные (<10-3), молекулярные (10-2-10-3), коллоидные(10-1-10-2). Гетерогенные системы (взвеси, суспензии, эмульсии) имеют размер частиц > 10-1.
2.14. Признаки химической реакции при растворении вещества. Подавляющее большинство химических реакций протекает в растворах. Сам процесс растворения часто можно рассматривать как химическую реакцию, т.к. между частицами растворенного вещества и растворителя возникают Ван-дер-Ваальсовы, водородные и донорно-акцепторные связи; образуются кристаллогидраты; процесс растворения сопровождается тепловым эффектом, иногда изменением цвета, объема (кроме растворов, близких к идеальным).
2.15. Основные способы выражения концентраций растворов: массовая доля W, молярная концентрация С, молярная концентрация эквивалента Сэ, моляльная концентрация b.
W =mв-ва:mр-ра×100, % С=mв-ва:×mv, моль/л Сэ=mв-ва:mэ×v, моль/л b = В/mА, моль/кг
2.16. Водоро́дный показа́тель, pH (произносится «пэ аш») — количественне выражение кислотности, вычисляется как отрицательный (взятый с обратным знаком) десятичный логарифм активности [H+] водородных ионов, выраженной в молях на литрhttp://ru.wikipedia.org/wiki/водородный показатель. Для сильных электролитов степень диссоциации α близка к 1.
Расчет рН для кислот: |
Расчет рН для оснований (гидроксидов): |
рН = -lg [H+]; [H-] = α∙С ∙n (произведение степени диссоциации (произносится «альфа»), молярной концентрации «це» и количества ионов H+, образующихся из одной молекулы кислоты «эн») |
рН = -14- рOН; рOН = -lg [OH-]; [OH-] = α∙С ∙n (произведение степени диссоциации (произносится «альфа»), молярной концентрации «це» и количества ионов OH-, образующихся из одной молекулы гидроксида «эн») |
Сильные электролиты — химические соединения, молекулы которых в разбавленных растворах практически полностью диссоциированы на ионы. Степень диссоциации α таких электролитов близка к 1. К сильным электролитам относятся многие неорганические соли, некоторые неорганические кислоты и основания в водных растворах, а также в растворителях, обладающих высокой диссоциирующей способностью (спирты, амиды и др.).
Для слабых электролитов α = √ Кд/C, где Кд – константа диссоциации (из хим. справочников), С - молярная концентрация, моль/л. |
Сильные кислоты |
Сильные основания |
HCl |
LiOH |
|
HClО4 |
NaOH |
|
HI |
KOH |
|
HВr |
CsOH |
|
HNO3, |
RbOH |
|
H2SO4 |
Ba(OH)2 |
|
HMnO4 |
Ca(OH)2 |
|
H2CrO4 |
Sr(OH)2 |
2.17. Гидролиз солей - разновидность реакций гидролиза, обусловленного протеканием реакций ионного обмена в растворах (преимущественно, водных) растворимых солей-электролитов. Движущей силой процесса является взаимодействие ионов с водой, приводящее к образованию слабого электролита.
Тема 3
2.18. Химическая термодинамика (термодинамика) – изучает законы, которые описывают энергетические эффекты, сопровождающие химические процессы. Первый закон термодинамики – энергия не исчезает и не возникает из ничего, а только превращается из одного вида в другой в строго эквивалентных соотношениях (1842 г., нем. врач Ю. Мейер).
Термодинамическая система – фактически или мысленно выделяемая пространственная совокупность, выделяемая из окружающей среды (автомобиль, ёмкость, молекула белка, человеческий организм и т.п.). Гомогенная система– однородная система, в которой нет частей, различающихся по свойствам и разделённых поверхностями раздела (воздух, вода, истинные растворы). Гетерогенная – разнородная, состоящая из 2-х и более частей, между которыми есть поверхность раздела, где свойства системы резко меняются. Фазы – гомогенные системы, образующие гетерогенную (Молоко разделяют как минимум на 2 фазы: водный раствор солей, лактозы, белков и жировую фазу).
Параметры, характеризующие состояние термодинамической системы: масса, количество вещества, объём, температура (Т), давление (р), концентрация (с). Функции состояния системы рассчитывают исходя из значений параметров её состояния: внутренняя энергия U (полная энергия всех частиц этой системы на молекулярном, атомном и ядерном уровнях); энтропия S, Дж/моль К (функция меры неупорядоченности системы, т.е. неоднородности расположения и движения её частиц); энтальпия Н, кДж/моль (функция энергетического состояния системы при изобарно-изотермических условиях); энергия Гиббса G, кДж/моль (обобщённая функция, учитывающая неупорядоченность и энергетику системы при изобарно-изотермических условиях). Экзотермические процессы сопровождаются выделением энергии из системы в окружающую среду, в результате энтальпия системы уменьшается, ΔНэкзо<0. Эндотермические процессы – с поглощением энергии системой из окружающей среды ΔНэндо>0. Термохимические уравнения – указывающие значение энтальпии реакции. Термодинамические функции или их изменения, измеренные при нормальных условиях (1 моль, 760 мм рт.ст.=101325 Па, 298 К=25º С) называются стандартными и обозначаются с верхним индексом «º».
2.19. Закон Гесса. Энтальпия реакции т.е. тепловой эффект реакции, зависит только от природы и состояния исходных веществ и конечных продуктов и не зависит от пути, по которому протекает реакция. Следствия из него: 1) энтальпия реакции равна разности суммы энтальпий образования всех продуктов реакции и суммы энтальпий образования всех исходных веществ ΔНр = ∑ΔНпрод - ∑ΔНисх. 2) энтальпия прямой реакции численно равна энтальпии обратной реакции, но с противоположным знаком ΔНпр = - ΔНобр . Стандартные энтальпии образования простых веществ = 0, сложных веществ = энтальпии реакции их получения из простых веществ. Второй закон термодинамики: в изолированных системах самопроизвольно могут совершаться только такие процессы, при которых энтропия системы возрастает, ΔS =∑Sпрод - ∑Sисх.>0. Т.о. энтальпийный фактор процессов заключается в стремлении системы к достижению минимума энергии, а энтропийный – к неупорядоченности. Функцией, учитывающей противоположности этих тенденций является энергия Гиббса ΔG = ΔH – TS; ΔGº = ∑ΔGº прод - ∑ΔGº исх.
2.20. Химическая кинетика ( химическая кинетика)– раздел химии, изучающий механизмы химических реакций и скорости их протекания. Скорость химической реакции определяется изменением концентрации реагирующих веществ в единицу времени, Δс/Δt, моль/ (л с). Количественная зависимость скорости реакции выражается основным постулатом химической кинетики, называемым закон действующих масс: Скорость простой гомогенной реакции (скорость химической реакции) аА + bB → cC + dD при постоянной температуре пропорциональна произведению концентраций произведению концентраций реагирующих веществ, возведённых в степени, равные стехиометрическим коэффициентам, υ = kCnA(A)CnВ(В), где k – константа скорости конкретной реакции. Необратимые – реакции, протекающие только в одном направлении до полного израсходования одного из реагирующих веществ. Обратимые – процессы, в которых одновременно протекают две взаимно противоположные реакции – прямая и обратная.
2.21. Химическое равновесие – такое состояние обратимого процесса, при котором, при неизменных внешних условиях, скорости прямой и обратной реакций равны, а также постоянны равновесные концентрации исходных и конечных веществ.
2.22. Закон действующих масс (для равновесных реакций): отношение произведений равновесных концентраций продуктов реакции к исходным, взятых в степенях, равных их стехиометрическим коэффициентам, является постоянной величиной, называемой константой равновесия К. Для уравния: аА + bB ↔ cC + dD |
[C]c [D]d К = --------------- [А]а [В]b
|