Файл: информатика шпоры.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 11.04.2024

Просмотров: 397

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

1. Единицы измерения информации.

2. Понятия прагматического и семантического подходов к измерению информации.

3. Свойства информации.

4. Исторические этапы развития вычислительной техники, состояние, перспективы.

5. Сравнительный анализ структурных схем эвм 1-2 поколений с современными компьютерами.

6. Состав современного вычислительного комплекса, общая характеристика.

7. Обоснование системы счисления, применяемой в современном компьютере.

8. Перевод чисел из одной системы счисления в другую.

9. Формы представления чисел в компьютере.

10. Кодирование текстовой, графической и звуковой информации в компьютере.

11. Понятие логических связей «и», «или», «не» и их роль в эвм.

12. Типы и функциональные характеристики современных микропроцессоров.

13. Функции и хар-ки системной платы, шины.

14. Кэш – память, ее назначение, характеристика.

15. Озу, назначение, хар-ки.

16. Назначение, разновидности и основные характеристики накопителей на жестких и гибких дисках.

17. Структура записи информации на магнитные и оптические диски. Понятие дорожек, сектора, кластера.

18. Накопители на оптических и магнитно-оптических дисках.

19. Форматирование дисков, его назначение, организация расположения файлов.

20. Назначение, разновидности и основные характеристики видеомониторов.

21. Назначение, разновидности, основные характеристики принтеров.

23. Общая характеристика программного обеспечения компьютера.

24. Классификация программных продуктов.

25. Исторический аспект развития системного программного обеспечения.

26. Базовое системное обеспечение.

27. Сервисное системное обеспечение.

28. Антивирусные программы, их характеристика.

29. Архиваторы, их назначение, характеристики.

30. Утилиты обслуживания дисков, их назначение, характеристика.

31. Понятие файла, его идентификация, атрибуты, расположение на диске, указание пути.

32. Файлы данных, их типы, понятия физического и логического устройства.

33. Характеристика файловой системы ms-dos, Windows.

34. Общая характеристика операц. Среды Windows – 95, 98, 2000

35. Общая характеристика инструментальных средств программирования.

36. Классификация пакетов прикладных программ (ппп).

1.Проблемно-ориентированные ппп

2. Ппп автоматизированного проектирования

3. Ппп общего назначения

4. Методо-ориентированные ппп

5. Офисные ппп

6. Настольные издательские системы

7. Программные средства мультимедиа

8. Системы искусственного интеллекта

37. Назначение и общая характеристика пакета прикладных программ Office.

38. Текстовые процессоры.

39. Порядок выполнения операций в выражении, содержащем скобки, арифметические операции, отношения и логические функции.

40. Табличные процессоры.

41. Основные подходы к выбору характеристик персонального компьютера.

42. Понятие алгоритма, его свойства.

43. Формы представления алгоритма.

44. Основные типы вычислительных процессов (управляющие структуры алгоритмов).

3. Циклический алгоритм.

45. Основные этапы подготовки решения задач эвм.

46. Инструментальные средства программирования, краткая характеристика, состояние, тенденции развития, rad технология.

Основные принципы rad

47. Трансляторы, их виды, краткая характеристика. Содержание трансляции.

48. Информационные технологии dde, ole. Примеры их применения.

50. Понятие и назначение базы данных.

51. Функциональные возможности субд.

52. Основные типы систем управления базами данных.

53. Различие архитектур баз данных: клиент-сервер и файл-сервер.

54. Особенности и назначение реляционной базы данных.

55. Краткая характеристика, назначение и взаимосвязь структурных элементов базы данных.

56. Нормализация отношений, нормальные формы реляционной бд.

57. Понятие ключа бд, его назначение.

58. Функционально-логические связи между таблицами базы данных.

59. Информационно-логическая модель базы данных.

60. Понятие целостности данных, ее роль в работе с базой данных.

61. Понятие поля базы данных, его тип, свойства.

62. Формы, отчеты, запросы в субд Access, их назначение, методы создания.

63. Характеристика, назначение современных субд.

64. Субд Access, ее характеристика, возможности.

65. Назначение и классификация компьютерных сетей.

66. Основные типы топологии локальных вычислительных сетей, характеристика, критический анализ.

67. Сеть internet, назначение, услуги, основные понятия.

68. Пакетная связь в Интернете. Маршрутизация сообщений.

1. Единицы измерения информации.

Часто приходится слышать, что сообщение или несет мало информации или, наоборот, содержит исчерпывающую информацию. При этом разные люди, получившие одно и то же сообщение (например, прочитав статью в газете), по-разному оценивают количество информации, содержащейся в нем. Это происходит оттого, что знания людей об этих событиях (явлениях) до получения сообщения были различными. Поэтому те, кто знал об этом мало, сочтут, что получили много информации, те же, кто знал больше, чем написано в статье, скажут, что информации не получили вовсе. Количество информации в сообщении, таким образом, зависит от того, насколько ново это сообщение для получателя. Количество информации зависит от новизны сведений об интересном для получателя информации явлении.      

Наряду с байтами для измерения количества информации используются более крупные единицы:      1 Кбайт (один килобайт) = 210 байт = 1024 байта;      1 Мбайт (один мегабайт) = 210 Кбайт = 1024 Кбайта;      1 Гбайт (один гигабайт) = 210 Мбайт = 1024 Мбайта. В последнее время в связи с увеличением объёмов обрабатываемой информации входят в употребление такие производные единицы, как:      1 Терабайт (Тб) = 1024 Гбайта = 240 байта,      1 Петабайт (Пб) = 1024 Тбайта = 250 байта. Емкость оперативной памяти измеряется в мегабайтах (Мбайт), реже в килобайтах (Кбайт). 1 Мбайт = 1024 Кбайта = 10242 байт. Многие современные прикладные программы при Оперативной памяти емкостью меньше 8 Мбайт просто не работают либо работают, но очень медленно. Емкость винчестера измеряется обычно в мегабайтах или гигабайтах (1 Гбайт = = 1024 Мбайта).Тип и емкость накопителей на гибких магнитных дисках, сейчас применяются в основном накопители на гибких магнитных дисках, использующие дискетьи диаметром 3,5 и 5,25 дюйма (1 дюйм = 25,4 мм). Первые имеют стандартную емкость 1,44 Мбайта, вторые — 1,2 Мбайта.

2. Понятия прагматического и семантического подходов к измерению информации.

Семантическая (смысловая) – эта форма определяет степень соответствия образа объекта и самого объекта. На этом уровне анализируются те сведения, которые отражают информацию.

Прагматическая (потребительская) – отражает отношение информации и ее потребителя, соответствие информации целям потребителям, которые реализуются на ее основе.


Семантическая мера информации

Для измерения смыслового содержания информации, т.е. ее количества на семантическом уровне, наибольшее признание получила тезаурусная мера, которая связывает семантические свойства информации со способностью пользователя принимать поступившее сообщение. Тезаурус — это совокупность сведений, которыми располагает пользователь или система.

Максимальное количество семантической информации потребитель приобретает при согласовании ее смыслового содержания со своим тезаурусом. Количество семантической информации в сообщении, количество новых знаний, получаемых пользователем, является величиной относительной.

Относительной мерой количества семантической информации может служить коэффициент содержательности, который определяется как отношение количества семантической информации к ее объему.

Прагматическая мера информации - Эта мера определяет полезность информации (ценность) для достижения пользователем поставленной цели. Эта мера также величина относительная, обусловленная особенностями использования этой информации в той или иной системе. Ценность информации целесообразно измерять в тех же самых единицах (или близких к ним), в которых измеряется целевая функция.


3. Свойства информации.

Как и всякий объект, информация обладает свойствами. Характерной отличительной особенностью информации от других объектов природы и общества, является дуализм: на свойства информации влияют как свойства исходных данных, составляющих ее содержательную часть, так и свойства методов, фиксирующих эту информацию. С точки зрения информатики наиболее важными представляются следующие общие качественные свойства: объективность, достоверность, полнота, точность, актуальность, полезность, ценность, своевременность, понятность, доступность, краткость и пр.

Объективность информации. Объективный – существующий вне и независимо от человеческого сознания. Информация – это отражение внешнего объективного мира. Информация объективна, если она не зависит от методов ее фиксации, чьего-либо мнения, суждения. Пример. Сообщение «На улице тепло» несет субъективную информацию, а сообщение «На улице 22°С» – объективную, но с точностью, зависящей от погрешности средства измерения. Объективную информацию можно получить с помощью исправных датчиков, измерительных приборов. Отражаясь в сознании конкретного человека, информация перестает быть объективной, так как, преобразовывается (в большей или меньшей степени) в зависимости от мнения, суждения, опыта, знаний конкретного субъекта.

Достоверность информации. Информация достоверна, если она отражает истинное положение дел. Объективная информация всегда достоверна, но достоверная информация может быть как объективной, так и субъективной. Достоверная информация помогает принять нам правильное решение. Недостоверной информация может быть по следующим причинам: преднамеренное искажение (дезинформация) или непреднамеренное искажение субъективного свойства;искажение в результате воздействия помех («испорченный телефон») и недостаточно точных средств ее фиксации.

Полнота информации. Информацию можно назвать полной, если ее достаточно для понимания и принятия решений. Неполная информация может привести к ошибочному выводу или решению.

Точность информации определяется степенью ее близости к реальному состоянию объекта, процесса, явления и т. п.

Актуальность информации – важность для настоящего времени, злободневность, насущность. Только вовремя полученная информация может быть полезна.

Полезность (ценность) информации. Полезность может быть оценена применительно к нуждам конкретных ее потребителей и оценивается по тем задачам, которые можно решить с ее помощью.


Самая ценная информация – объективная, достоверная, полная, и актуальная. При этом следует учитывать, что и необъективная, недостоверная информация (например, художественная литература), имеет большую значимость для человека. Социальная (общественная) информация обладает еще и дополнительными свойствами:

имеет семантический (смысловой) характер, т. е. понятийный, так как именно в понятиях обобщаются наиболее существенные признаки предметов, процессов и явлений окружающего мира.

имеет языковую природу (кроме некоторых видов эстетической информации, например изобразительного искусства). Одно и то же содержание может быть выражено на разных естественных (разговорных) языках, записано в виде математических формул и т. д.

С течением времени количество информации растет, информация накапливается, происходит ее систематизация, оценка и обобщение. Это свойство назвали ростом и кумулированием информации.

Старение информации заключается в уменьшении ее ценности с течением времени. Старит информацию не само время, а появление новой информации, которая уточняет, дополняет или отвергает полностью или частично более раннюю. Научно-техническая информация стареет быстрее, эстетическая (произведения искусства) – медленнее.

Логичность, компактность, удобная форма представления облегчает понимание и усвоение информации.


4. Исторические этапы развития вычислительной техники, состояние, перспективы.

История вычислительной техники началась с попыток автоматизировать расчетные операции с помощью механических приспособлений. Полагают, что первыми <вычислительными машинами были русские счеты (ХVI— ХVII вв.) и суммирующая машина Блеза Паскаля (ХVII в.). В ХIХ веке (П.Л.Чебышев в России, Ч.Беббиджа в Англии) были созданы механические арифмометры и первые машины с программным управлением.

Эра электронных (первое поколение) вычислительных машин началась в 30-х годах ХХ века с разработок А.Тьюринга и Э.Поста. Основные принципы построения цифровых вычислительных машин (ЦВМ) были разработаны американскими учеными дж. фон Нейманом, Г.Голдстайном и А.Берксом, а первые ЦВМ на ламповых схемах появились в США в 1946—1948 годах.

Развитие электронной вычислительной техники в СССР тесно связано с именем академика С.А.Лебедева, под руководством которого были созданы первые отечественные ЭВМ: в 1951 г. — МЭСМ (Малая Электронная Счетная Машина) и в 1952 г. — БЭСМ (Большая Электронная Счетная Машина).

Лебедев руководил и созданием БЭСМ-б — лучшей в мире ЭВМ второго поколения, уровень которой, по мнению экспертов, на несколько лет опередил уровень зарубежных аналогов. Обладая высоким быстродействием (около 1 миллиона операций в секунду), она по своей архитектуре (принципам построения) была ближе к ЭВМ третьего поколения и выпускалась серийно до 1981 года. БЭСМ-б являлась самой распространенной ЭВМ для научных расчетов.

Важную роль в развитии вычислительной техники сыграла единственная в мире ЭВМ Сетунь, разработанная в 1959 г. «Сетунь» использовала троичную симметричную систему представления чисел (с цифрами 1, 0, -1), и интерес к такому подходу возродился сейчас, когда стали очевидными ограничения вычислительной техники, построенной на двоичной системе счисления.

Первые ЭВМ использовались только в крупных научных центрах, в космических исследованиях, обороне, в метеорологии.

В начале 60-х годов в советских организациях появились первые универсальные ламповые ЭВМ — Минск» и «Урала. для ввода и программ, и данных применялась бумажная перфолента, которую готовили на телеграфных аппаратах, изобретенных еще в конце ХIХ века.

В машинах второго поколения (кМИнСк-2<, Минск-22», Минск-32»), работавших на полупроводниковых схемах, появилось замечательное изобретение: алфавитно-цифровое печатающее устройство (АЦПУ). Это был громоздкий, шумный, но довольно надежный агрегат, позволявший печатать на перфорированной рулонной или вальцованной бумаге более или менее форiiлатированный текст. АдПУ оказалось наиболее живучим из всех древних устройств: на больших машинах его активно используют и сейчас (например, для печати счетов за ваши телефонные разговоры).