Файл: Пеноуз Роджер. Тени разума. В поисках науки о сознании.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.06.2024

Просмотров: 760

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Роджер пенроуз

1.2. Спасут ли роботы этот безумный мир?

1.3. Вычисление и сознательное мышление

1.4. Физикализм и ментализм

1.5. Вычисление: нисходящие и восходящие процедуры

1.6. Противоречит ли точка зрения в тезису Черча—Тьюринга?

1.7. Хаос

1.8. Аналоговые вычисления

1.9. Невычислительные процессы

1.10. Завтрашний день

1.11. Обладают ли компьютеры правами и несут ли ответственность?

1.12. «Осознание», «понимание», «сознание», «интеллект»

1.13. Доказательство Джона Серла

1.14. Некоторые проблемы вычислительной модели

1.15. Свидетельствуют ли ограниченные возможности сегодняшнего ии в пользу ?

1.16. Доказательство на основании теоремы Гёделя

1.17. Платонизм или мистицизм?

1.18. Почему именно математическое понимание?

1.19. Какое отношение имеет теорема Гёделя к «бытовым» действиям?

1.20. Мысленная визуализация и виртуальная реальность

1.21. Является ли невычислимым математическое воображение?

Примечания

2 Геделевское доказательство

2.1. Теорема Гёделя и машины Тьюринга

2.2. Вычисления

2.3. Незавершающиеся вычисления

2.4. Как убедиться в невозможности завершить вычисление?

2.5. Семейства вычислений; следствие Гёделя — Тьюринга

2.6. Возможные формальные возражения против

2.7. Некоторые более глубокие математические соображения

2.8. Условие -непротиворечивости

2.9. Формальные системы и алгоритмическое доказательство

2.10. Возможные формальные возражения против (продолжение)

Примечания

Приложение а: геделизирующая машина тьюринга в явном виде

3 О невычислимости в математическом мышлении

3.1. Гёдель и Тьюринг

О психофизи(ологи)ческой проблеме

Р.Пенроуз. Тени ума: в поисках потерянной науки о сознании. Penrose r. Shadows of the mind: a search for the missing science of consciousness. - Oxford, 1994. - XVI, 457 p.

Отметим, что в роли ограничителя познаваемости не мо­жет выступать просто величина числа. Не представляет никакой сложности описать числа, настолько огромные, что они превзой­дут по величине все числа, которые могут потребоваться для описания алгоритмических операций, определяющих поведение любого организма в наблюдаемой Вселенной (взять хотя бы такое легко описываемое число, как, о котором мы упоминали в комментарии к— это число далеко превосходит количество всех возможных состояний вселенной для всего вещества, содер­жащегося в границах наблюдаемой нами вселенной). За пре­делами человеческих возможностей оказывается именно точное описание искомого числа, величина же его особой роли не играет.

Допустим (в полном согласии с), что описание такого алгоритмачеловеку и в самом деле не по силам. Что из это­го следует в отношении перспектив разработки высокоуспешной стратегии создания ИИ (как по «сильным», так и по «слабым» принципам — иначе говоря, в соответствии с точками зрения как, так и)? Адепты полностью автоматизированных ИИ-систем (т. е. сторонникинепременно, а также, возможно, кто-то из лагеря) предвосхищают появление в конечном итоге ро­ботов, способных достичь уровня математических способностей человека и, возможно, превзойти этот уровень. Иными словами (если согласиться с вариантом), непременным компонентом контрольной системы такого робота-математика должен стать тот самый, недоступный человеческому пониманию алгоритм. Отсюда, по всей видимости, следует, что стратегия создания ИИ, нацеленная на получение именно такого результата, обречена на провал. Причина проста — если для достижения цели необходим алгоритм, который в принципе не способен описать ни один человек, то где же тогда этот алгоритм взять?

Однако наиболее амбициозные сторонники идеирисуют себе совсем другие картины. Они предвидят, что необходимый алгоритмбудет получен не в одночасье, но поэтапно — по мере того, как сами роботы будут постепенно повышать свою эффек­тивность с помощью алгоритмов (восходящих) обучения и накоп­ления опыта. Более того, самые совершенные роботы не будут, скорее всего, созданы непосредственно людьми, а явятся продук­том деятельности других роботов, возможно, несколько более примитивных, нежели ожидаемые нами роботы-математики; кро­ме того, в процессе развития роботов будет, возможно, принимать участие и некое подобие дарвиновской эволюции, в результате чего от поколения к поколению роботы будут становиться все бо­лее совершенными. Разумеется, не обойдется и без утверждений в том духе, что именно посредством подобных, в общем-то, процессов нам самим удалось оснастить свои «нейронные компью­теры» неким для нас не познаваемым алгоритмом, на котором и работает наше собственное математическое понимание.


В нескольких последующих разделах я покажу, что при всей привлекательности подобных процессов проблема, в сущности, остается нерешенной: если сами процедуры, с помощью которых предполагается создать ИИ, являются прежде всего алгоритми­ческими и познаваемыми, то любой полученный таким образом алгоритмтакже должен быть познаваемым. В этом случае ва­риантсводится либо к варианту, либо к варианту, которые мы исключили впо причине фактической невозможно-

сти (вариант) или, по меньшей мере, крайнего неправдоподобия (вариант). Более того, если исходить из допущения, что инте­ресующие нас алгоритмические процедуры познаваемы, то нам, вообще говоря, следует отдать предпочтение именно варианту. Соответственно, вариант(равно как и, по смыслу, вариант) также следует признать практически несостоятельным.

Читателю, который искренне верит в то, что возможный ва­риантоткрывает наиболее вероятный путь к созданию вычис­лительной модели разума, я рекомендую обратить на приведен­ные выше аргументы самое пристальное внимание и тщательней­шим образом их изучить. Не сомневаюсь, что он придет к тому же выводу, к какому пришел я: если допустить, что математическое понимание и в самом деле осуществляется в соответствии с ва­риантом, то единственным хоть сколько-нибудь правдоподоб­ным объяснением происхождения нашего собственного алгорит­маостается считать божественное вмешательство — то самое сочетание, о котором мы говорили в конце — а такое объяснение, конечно же, не утешит тех, кто лелеет амбициозные перспективные планы по созданию компьютерного ИИ.

3.6. Естественный отбор или промысел Господень?

Возможно, нам следует-таки всерьез рассмотреть возмож­ность того, что за нашим интеллектом и в самом деле стоит некий божественный промысел — по каковой причине этот самый ин­теллект никак нельзя объяснить с позиций той науки, которая достигла столь значительных успехов в описании мира неодушевленных предметов. Разумеется, мы по-прежнему должны со­хранять широту мышления, однако я хочу сразу прояснить один момент: в последующих рассуждениях я намерен придерживать­ся научной точки зрения. Я намерен рассмотреть возможность того, что наше математическое понимание является результатом работы некоего непостижимого алгоритма, — а также вопрос о возможном происхождении подобного алгоритма, — никоим образом не выходя за рамки научного подхода. Возможно, кто-то из читателей этой книги склонен верить в то, что этот алгоритм и в самом деле мог быть просто вложен в наши головы по воле божьей. Убедительного опровержения такого предположения у меня, признаться, нет; хотя я никак не могу взять в толк, — если уж мы решаем отказаться на каком-то этапе от научного под­хода — почему считается как нельзя более благоразумным бро­саться именно в эту крайность. Если научное объяснение ничего, в сущности, не объясняет, то не уместнее ли будет вообще поза­быть о каких бы то ни было алгоритмических процедурах, нежели прятать свою предполагаемую свободу воли за сложностью и непостижимостью какого-то алгоритма, который, как нам хочет­ся думать, контролирует каждое наше движение? Возможно, ра­зумнее будет просто счесть (как, похоже, считал сам Гёдель), что деятельность разума совершенно не связана с процессами, про­текающими в физическом мозге, — что замечательно согласуется с точкой зрения. С другой стороны, в настоящее время, как мне представляется, даже те, кто верит в то, что мышление и впрямь является в каком-то смысле божественным даром, склонны все же полагать, что поведение человека можно объяснить, не вы­ходя за пределы возможностей науки. Несомненно, приведенные варианты являются весьма спорными, однако на данном этапе я вовсе не предполагал спорить с убеждениями сторонников точки зрения. Надеюсь, что те читатели, которых можно отнести к приверженцам той или иной формы, все же потерпят меня еще некоторое время, а я пока попробую выяснить, к чему нас может привести в данном случае научный подход.


Какие же научные последствия может иметь допущение, что математические суждения мы получаем в результате выполнения некоей необходимой и непостижимой алгоритмической процеду­ры? Вырисовывается приблизительно такая картина: исключи­тельно сложные алгоритмические процедуры, необходимые для моделирования подлинного математического понимания, являются результатом многих сотен тысяч лет (по меньшей мере) естественного отбора вкупе с несколькими тысячами лет воз­действия образования и внешних факторов, обусловленных фи­зическим окружением. Можно допустить, что наследуемые ас­пекты этих процедур формировались постепенно из более про­стых (ранних) алгоритмических компонентов в результате того же давления естественного отбора, которое ответственно за возник­новение всех остальных в высшей степени эффективных меха­низмов, из которых собраны наши тела, равно как и наши моз­ги. Врожденные потенциально математические алгоритмы (т. е. все те унаследованные аспекты, которые могли бы относиться к математическому мышлению, предположительно алгоритмиче­скому) до поры пребывали в закодированном состоянии (в виде неких особых последовательностей нуклеотидов) внутри молекул ДНК, а затем проявились посредством той же процедуры, какая задействуется при всяком постепенном (либо скачкообразном) усовершенствовании живого организма, реагирующего на давле­ние отбора. Помимо прочего, свой вклад в эти процессы вносят и всевозможные внешние факторы — такие как непосредственное математическое образование, опыт взаимодействия с физическим окружением, прочие факторы, оказывающие дополнительно са­мые разные чисто случайные воздействия. Думаю, мы должны попытаться выяснить, можно ли полагать описанную картину хоть сколько-нибудь правдоподобной?

3.7. Алгоритм один или их много?

Прежде всего, необходимо рассмотреть следующий весьма важный вопрос: может ли оказаться, что за различные виды ма­тематического понимания, свойственные разным людям, отвечает множество весьма различных, возможно, неэквивалентных алго­ритмов? В самом деле, уж в чем мы можем быть с самого нача­ла уверены, так это в том, что даже профессиональные матема­тики часто воспринимают математические «реалии» совершен­но по-разному. Для одних в высшей степени важны зрительные образы, тогда как другим удобнее иметь дело с четкими логи­ческими структурами, изящными абстрактными доказательства­ми, подробными аналитическими обоснованиями или, возможно, с чисто алгебраическими манипуляциями. В этой связи следует отметить, что, по некоторым предположениям, геометрическое, например, и аналитическое мышление осуществляются разными полушариями мозга (соответственно, правым и левым). Одна­ко часто бывает так, что всеми этими способами воспринимается одна и та же математическая истина. С алгоритмической точки зрения первое впечатление таково, что алгоритмы, отвечающие за математическое мышление различных людей, должны быть как минимум абсолютно неэквивалентными. Однако, несмотря на существенное различие между образами, которые формируют в сознании отдельные математики (или прочие смертные) для соб­ственного понимания или для сообщения другим математических идей, математическое восприятие обладает одним поразительным свойством: когда математики наконец решают для себя, что имен­но следует считать неопровержимо истинным, никаких разногла­сий по этому поводу больше не возникает, разве что поводом для такого разногласия послужит какая-либо действительная, опознаваемая (а следовательно, и исправимая) ошибка в рассу­ждениях того или иного математика (еще один возможный повод для разногласий предоставляет принципиальное расхождение во мнениях по некоторым — весьма немногочисленным — фунда­ментальным вопросам; см. комментарий к, в особенности утверждение). В целях упрощения изложения я позволю се­бе в дальнейшем последнее соображение проигнорировать. Хотя это соображение и имеет некоторое отношение к предмету на­шего разговора, на выводы оно заметного влияния не оказывает. (Придерживаемся ли мы нескольких возможных неэквивалент­ных точек зрения на какой-то вопрос или все соглашаемся на одной — существенного различия между этими двумя ситуациями в данном случае нет.)


Восприятие математической истины может осуществлять­ся самыми различными способами. Вряд ли можно усомниться в том, что вне зависимости от конкретной природы физических процессов, обусловливающих осознание человеком истинности какого-либо математического утверждения, эти процессы долж­ны весьма и весьма разниться от индивидуума к индивидууму, даже если речь идет об одном и том же утверждении. Иначе говоря, если математики при составлении суждений о неопровер­жимой истинности того или иного утверждения просто-напросто применяют какие-то вычислительные алгоритмы, то у разных математиков эти самые алгоритмы должны весьма значительно различаться по своей структуре. При этом, в некотором очевидном смысле, упомянутые алгоритмы должны быть еще и эквива­лентны друг другу.

Это условие, возможно, не так уж и абсурдно, как может по­казаться на первый взгляд, по крайней мере, с точки зрения мате­матически возможного. Весьма разные на вид машины Тьюрин­га могут давать на выходе идентичные результаты. (Рассмотрим, например, машину Тьюринга, построенную следующим образом: при выполнении действия над натуральным числом n мы полу­чаем в результате 0 всякий раз, когда n выразимо в виде суммы четырех квадратов, и 1, когда п таким образом выразить нельзя. Результат вычисления такой машины полностью совпадает с ре­зультатом другой машины, построенной таким образом, чтобы давать на выходе 0 при подаче на вход любого натурального чис­ла n — ибо известно, что в виде суммы четырех квадратов можно представить любое натуральное число; см. §2.3.) Из идентич­ности внешних конечных результатов двух алгоритмов вовсе не обязательно следует, что эти алгоритмы окажутся подобными по внутренней структуре. Однако, в определенном смысле, рассмат­риваемое допущение еще более запутывает вопрос о происхо­ждении нашего гипотетического непостижимого алгоритма(-ов) для установления математической истины, поскольку теперь нам предстоит иметь дело уже с несколькими такими алгоритмами, достаточно отличными друг от друга по внутренней структуре, но при этом существенно эквивалентными в отношении получаемого на выходе результата.

3.8. Эзотерические математики не от мира сего как результат естественного отбора

Какую же роль играет во всем этом естественный отбор? Возможно ли, чтобы естественным путем возник некий алго­ритм(или несколько таких алгоритмов), обусловливающий на­ше математическое понимание и при этом непознаваемый сам по себе (если верить допущению), либо лишь в отношении выпол­няемых им функций (в соответствии с допущением)? Начнем с повторения того, о чем мы уже говорили в началеВ процессе получения своих предположительно неопровержимо истинных математических выводов математики вовсе не считают, что они просто следуют некоему набору непознаваемых правил —правил настолько сложных, что, с математической точки зрения, они непостижимы в принципе. Напротив, они полагают, что эти выводы представляют собой результат неких обоснованных рас­суждений, пусть часто длинных и внешне запутанных, которые в конечном счете опираются на четкие неопровержимые истины, понятные, в принципе, любому.


Более того, рассматривая ситуацию с позиций здравого смысла или на уровне логических дескрипций, мы можем со всей определенностью утверждать, что математики и в самом деле де­лают то, что, как им кажется, они делают. Этот факт не подлежит никакому сомнению, а важность его переоценить невозможно. Если мы полагаем, что математики в своей деятельности следуют некоему набору непознаваемых и непостижимых вычислитель­ных правил (в соответствии с возможными вариантами), то, значит, они делают еще и это — одновременно с тем, что, как им кажется, они делают, но на другом уровне дескрипции. Каким-то образом алгоритмическое следование правилам должно давать тот же самый результат, что дают математическое понимание и интуиция — по крайней мере, на практике. Если уж мы твердо вознамерились стать приверженцами либо, либо, то нам предстоит попытаться поверить в то, что такая возможность яв­ляется вполне правдоподобной.

Нужно помнить и о том, какие блага дают эти алгоритмы. Предполагается, что они наделяют своего «носителя» — по край­ней мере, в принципе — способностью составлять корректные математические суждения об абстрактных сущностях, весьма да­леких от непосредственного жизненного опыта, что, по большей части, не дает этому самому носителю сколько-нибудь заметных практических преимуществ. Любой, кому хоть раз доводилось заглянуть в какой-нибудь современный чисто математический научный журнал, знает, насколько далеки заботы математиков от каких бы то ни было практических вопросов. Тонкости тео­ретических обоснований, обычно публикуемых в таких научных журналах, непосредственно доступны лишь очень небольшому количеству людей; и все же каждое такое рассуждение состоит, в конечном счете, из каких-то элементарных шагов, и каждый та­кой шаг может, в принципе, понять любой мыслящий индивиду­ум, даже если речь идет об абстрактных рассуждениях о сложно определяемых бесконечных множествах. Не следует забывать и о том, что алгоритм — или, возможно, целый ряд альтернативных, но математически эквивалентных, алгоритмов, — который дает человеку потенциальную способность понимать упомянутые рассуждения, каким-то образом был изначально записан не где-нибудь, а в нуклеотидных последовательностях молекулы ДНК. Если мы в это верим, то нам следует весьма серьезно задуматься, как же так получилось, что подобный алгоритм (или алгоритмы) развился в результате естественного отбора. Очевидно, что да­же в настоящее время профессия математика не дает никаких преимуществ с точки зрения борьбы за существование. (Подо­зреваю, что ее можно даже считать неблагоприятным фактором. Вследствие своего взрывного темперамента и странноватых при­страстий пуристы со склонностью к математике имеют тенденцию заканчивать свой жизненный путь на какой-нибудь низкооплачи­ваемой академической службе — или и вовсе безработными.) Го­раздо правдоподобнее выглядит иная картина: способность рас­суждать о весьма абстрактно определяемых бесконечных множе­ствах, бесконечных множествах бесконечных множеств и т. д. ни­каких особых преимуществ в борьбе за выживание нашим дале­ким предкам дать просто не могла. Этих самых предков заботили практические повседневные проблемы — такие, возможно, как постройка убежищ, изготовление одежды, изобретение ловушки для мамонтов или, несколько позднее, одомашнивание животных и выращивание урожая. (См. рис. 3.1.)