Файл: Пеноуз Роджер. Тени разума. В поисках науки о сознании.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.06.2024

Просмотров: 765

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Роджер пенроуз

1.2. Спасут ли роботы этот безумный мир?

1.3. Вычисление и сознательное мышление

1.4. Физикализм и ментализм

1.5. Вычисление: нисходящие и восходящие процедуры

1.6. Противоречит ли точка зрения в тезису Черча—Тьюринга?

1.7. Хаос

1.8. Аналоговые вычисления

1.9. Невычислительные процессы

1.10. Завтрашний день

1.11. Обладают ли компьютеры правами и несут ли ответственность?

1.12. «Осознание», «понимание», «сознание», «интеллект»

1.13. Доказательство Джона Серла

1.14. Некоторые проблемы вычислительной модели

1.15. Свидетельствуют ли ограниченные возможности сегодняшнего ии в пользу ?

1.16. Доказательство на основании теоремы Гёделя

1.17. Платонизм или мистицизм?

1.18. Почему именно математическое понимание?

1.19. Какое отношение имеет теорема Гёделя к «бытовым» действиям?

1.20. Мысленная визуализация и виртуальная реальность

1.21. Является ли невычислимым математическое воображение?

Примечания

2 Геделевское доказательство

2.1. Теорема Гёделя и машины Тьюринга

2.2. Вычисления

2.3. Незавершающиеся вычисления

2.4. Как убедиться в невозможности завершить вычисление?

2.5. Семейства вычислений; следствие Гёделя — Тьюринга

2.6. Возможные формальные возражения против

2.7. Некоторые более глубокие математические соображения

2.8. Условие -непротиворечивости

2.9. Формальные системы и алгоритмическое доказательство

2.10. Возможные формальные возражения против (продолжение)

Примечания

Приложение а: геделизирующая машина тьюринга в явном виде

3 О невычислимости в математическом мышлении

3.1. Гёдель и Тьюринг

О психофизи(ологи)ческой проблеме

Р.Пенроуз. Тени ума: в поисках потерянной науки о сознании. Penrose r. Shadows of the mind: a search for the missing science of consciousness. - Oxford, 1994. - XVI, 457 p.

Разумно было бы предположить, что упомянутые преимуще­ства, которыми, очевидно, все же обладали наши предки, про­исходили из качеств, необходимых для решения как раз таких, практических проблем, а уже потом, гораздо позднее, выясни­лось, что эти же качества замечательно подходят и для решения проблем математических — этакий побочный результат. Во вся­ком случае, такой ход событий полагаю более или менее прав­доподобным я сам. Развивая это предположение, можно допу­стить, что под давлением естественного отбора человек каким-то образом приобрел или развил в себе некую общую способность понимать. Эта способность понимать, проникать в суть вещей, не была связана с какими-то конкретными областями его дея­тельности и оказывалась полезной буквально во всем. То же со­оружение жилищ или ловушек для мамонтов существенно услож­нилось бы, не обладай человек способностью понимать веши и явления в их общности. При этом лично я полагаю, что Homo sapiens был отнюдь не уникален в своей способности понимать.

Такой же способностью обладали, возможно, и многие другие животные, составлявшие человеку конкуренцию в борьбе за су­ществование, однако обладали в меньшей степени, в результате чего человек, в силу более интенсивного развития этой способ­ности, получил над ними весьма существенное преимущество.

Сложности с такой точкой зрения возникают как раз тогда, когда мы начинаем рассматривать наследуемую способность к пониманию как нечто по своей природе алгоритмическое. Как нам уже известно из предшествующих рассуждений и доказательств, любая (алгоритмическая) способность к пониманию, достаточ­но сильная для того, чтобы ее обладатель оказался в состоянии разобраться в тонкостях математических обоснований, в частно­сти, гёделевского доказательства в представленном мною вари­анте, должна быть обусловлена процедурой настолько замысло­ватой и непостижимой, что о ней (или ее роли) не может знать даже сам обладатель этой способности. Наш прошедший че­рез испытания естественного отбора гипотетический алгоритм, по всей видимости, достаточно силен, ведь еще во времена на­ших далеких предков он уже включал в область своей потен-

циальной применимости правила всех формальных систем, рас­сматриваемых сегодня математиками как безоговорочно непро­тиворечивые (или неопровержимо обоснованные, если речь идет о-высказываниях,, комментарий к). Сюда почти наверняка входят и правила формальной системы Цермело— Френкеля, или, возможно, ее расширенного варианта, систе­мы(иначе говоря, самойс добавлением аксиомы вы­бора) — системы (см.и 2.10, комментарий к), ко­торую многие математики сегодня рассматривают как источник абсолютно всех необходимых для обычной математики методов построения рассуждений, — а также все частные формальные системы, которые могут быть получены из системыпосред­ством применения к ней процедуры гёделизации сколько угодно раз, и кроме того, все другие формальные системы, которые могут быть получены математиками посредством тех или иных озарений и рассуждений — скажем, на основании открытия, суть которого состоит в том, что системы, полученные в результате упомянутой гёделизации, всегда являются неопровержимо обоснованными, или исходя из иных рассуждений еще более основополагающего характера. Такой алгоритм должен был также включать в себя (в виде собственных частных экземпляров) потенциальные спо­собности к установлению тонких различий, отделению справед­ливых аргументов от ничем не обоснованных во всех тех, тогда еще не открытых, областях математики, которые сегодня окку­пируют страницы специальных научных журналов. Все выше­перечисленные способности должны были оказаться каким-то образом закодированы внутри этого самого — гипотетического, непознаваемого или, если хотите, непостижимого — алгоритма, и вы хотите, чтобы мы поверили, что он возник исключительно в результате естественного отбора, в ответ на какие-то внешние условия, в которых нашим далеким предкам приходилось бороть­ся за выживание. Конкретная способность к отвлеченным мате­матическим рассуждениям не могла дать своему обладателю ни­каких непосредственных преимуществ в этой борьбе, и я со всей определенностью утверждаю, что для возникновения подобного алгоритма не существовало и не могло существовать никаких естественных причин.


Однако стоит нам допустить, что «способность понимать» имеет неалгоритмическую природу, как ситуация в корне меняет­ся. Теперь уже нет необходимости приписывать этой способности какую-то неимоверную сложность, вплоть до полной непозна-вамости или непостижимости. Более того, она может оказаться гораздо ближе к тому, что «математики, как им кажется, делают». Способность к пониманию представляется мне весьма простым и даже обыденным качеством. Ее сложно определить в каких-либо точных терминах, однако она настолько близка нам и привычна, что в принципиальную невозможность корректного моделирова­ния понимания посредством какой бы то ни было вычислитель­ной процедуры верится с трудом. И все же так оно и есть. Для создания подобной вычислительной модели необходима алгорит­мическая процедура, так или иначе учитывающая все возмож­ные варианты развития событий в будущем, — т. е. алгоритм, в котором должны быть, скажем так, предварительно запрограм­мированы ответы на все математические вопросы, с которыми нам когда-либо предстоит столкнуться. Если непосредственному программированию эти ответы не подлежат, то нужно обеспе­чить какие-то вычислительные способы для их отыскания. Как мы уже успели убедиться, если эти «вычислительные способы» (или «предварительное программирование») охватывают все, что когда-либо было или будет доступно человеческому пониманию, то сами они для человека становятся непостижимыми. Откуда же слепым эволюционным процессам, нацеленным исключительно на обеспечение выживания сильнейших, было «знать» о том, что такая-то непознаваемо обоснованная вычислительная процеду­ра окажется когда-то в будущем способной решать абстрактные математические задачи, не имеющие абсолютно никакого отно­шения к проблемам выживания?

3.9. Алгоритмы обучения

Дабы не подвергать читателя искушению чересчур поспешно смириться с абсурдностью описанной выше возможности, я дол­жен несколько прояснить картину, на что мне уже, несомненно, указывают сторонники вычислительного подхода. Как уже отме­чалось вэти самые сторонники имеют в виду не столько алгоритм, который, в известном смысле, «предварительно запро­граммирован» на предоставление решений математических про­блем, сколько некую вычислительную систему, способную обу­чаться. Такая система может состоять, в основе своей, из «воеходящих» компонентов, соединенных по мере необходимости с какими-либо «нисходящими» процедурами (см. § 1.5).


Возможно, кому-то покажется, что называть «нисходящей» систему, возникшую исключительно в результате слепого давле­ния естественного отбора, не совсем уместно. Этим термином я буду обозначать здесь те аспекты нашей гипотетической алгорит­мической процедуры, которые для данного организма зафикси­рованы генетически и не подвержены изменению под влиянием последующего жизненного опыта или обучения каждого отдель­ного представителя вида. Хотя упомянутые нисходящие аспек­ты и не были созданы кем-то или чем-то, обладающим подлин­ным «знанием» об их предполагаемых функциях и возможностях (речь идет всего лишь о трансляции определенных цепочек ДНК, приводящей к соответствующей активности клеток мозга), они, тем не менее, способны четко обозначить правила, в соответствии с которыми и будет действовать математически активный мозг. Эти нисходящие процедуры снабдят нашу систему теми алго­ритмическими операциями, которые составят необходимую фик­сированную структуру, в рамках которой, в свою очередь, будут функционировать более гибкие «процедуры обучения» (восходя­щие).

Какова же природа этих процедур обучения? Вообразим, что наша самообучающаяся система помещена в некоторое внешнее окружение, причем поведение системы внутри это­го окружения непрерывно модифицируется под влиянием реак­ции окружения на ее предыдущие действия. В процессе участ­вуют, в основном, два фактора. Внешним фактором являет­ся поведение окружения и его реакция на действия систе­мы, а внутренним — изменения в поведении системы в от­вет на изменения в окружении. Прежде всего следует решить вопрос об алгоритмической природе внешнего фактора. Мо­жет ли реакция внешнего окружения вносить в общую картину некую неалгоритмическую составляющую, если внутреннее устройство нашей системы обучения является целиком и полно­стью алгоритмическим?

В определенных обстоятельствах (как, например, часто бы­вает при «обучении» искусственных нейронных сетей) реакция внешнего окружения заключается в изменении поведения экспе­риментатора (инструктора, преподавателя — в дальнейшем пред­лагаю называть его просто «учителем»), изменении намеренном и предпринимаемом с целью улучшить качество функциониро­вания системы. Когда система функционирует так, как требу­ет учитель, ей об этом сообщают с тем, чтобы в дальнейшем (под воздействием внутренних механизмов модификации пове­дения системы) она с большей вероятностью функционирова­ла бы именно таким образом. Предположим, например, что у нас имеется искусственная нейронная сеть, которую необходимо научить распознавать человеческие лица. Мы непрерывно на­блюдаем за функционированием нашей системы и после каж­дого рабочего цикла снабжаем ее данными о правильности ее последних «догадок» для того, чтобы она могла улучшить ка­чество своей работы, модифицировав нужным образом внутрен­нюю структуру. На практике, за адекватностью результатов каж­дого рабочего цикла совсем не обязательно должен наблюдать учитель-человек, так как процедуру обучения можно в значи­тельной степени автоматизировать. В описанной ситуации це­ли и суждения учителя-человека образуют наивысший критерий качества функционирования системы. В других ситуациях ре­акция окружения может оказаться не столь «преднамеренной». Например, в процессе развития живых систем — предполага­ется, что эти системы все же функционируют в соответствии с некоторой нейронной схемой (или иной алгоритмической про­цедурой, например, генетическим алгоритмом, см. §3.7), вроде тех, что применяются в численном моделировании — в подоб­ных внешних целях или суждениях вообще не возникает необ­ходимости. Вместо этого, живые системы модифицируют свое поведение в процессе, который можно рассматривать как своего рода естественный отбор, действуя согласно критериям, эво­люционировавшим на протяжении многих лет и способствующим увеличению шансов на выживание как самой системы, так и ее потомства.


3.10. Может ли окружение вносить неалгоритмический внешний фактор?

Выше мы предположили, что сама наша система (независи­мо от того, живая она или нет) представляет собой нечто вро­де робота с компьютерным управлением, т. е. все ее самомо-дификационные процедуры являются целиком вычислительны­ми. (Я пользуюсь здесь термином «робот» исключительно для того, чтобы подчеркнуть то обстоятельство, что нашу систему следует рассматривать как некую самостоятельную, целиком и полностью вычислительную сущность, находящуюся во взаимо­действии со своим окружением. Я вовсе не подразумеваю, что она непременно представляет собой какое бы то ни было меха­ническое устройство, целенаправленно сконструированное чело­веком. Такой системой, если веритьили, может оказать­ся развивающееся человеческое существо, а может и в самом деле какой-то искусственно созданный объект.) Итак, мы по­лагаем, что внутренний фактор является полностью вычисли­тельным. Необходимо установить, является ли вычислительным также и внешний фактор, вносимый окружением, — иначе го­воря, возможно ли построить эффективную численную модель этого самого окружения как в искусственном (т. е. когда окру­жение неким искусственным образом контролируется учителем-человеком), так и в естественном случае (когда высшим авто­ритетом является давление естественного отбора). В каждом слу­чае конкретные внутренние правила, в соответствии с которыми система обучения робота модифицирует его поведение, должны быть составлены так, чтобы тем или иным образом реагировать на конкретные сигналы, посредством которых окружение будет сообщать системе о том, как следует оценивать качество ее функ­ционирования в предыдущем рабочем цикле.

Вопрос о возможности моделирования окружения в искус­ственном случае (иными словами, о возможности численного мо­делирования поведения человека-учителя) представляет собой тот самый общий вопрос, ответ на который мы пытаемся найти вот уже в который раз. В рамках гипотезили, следствия из которых мы рассматриваем в настоящий момент, допускается, что эффективное моделирование в этом случае и в самом деле возможно, по крайней мере, в принципе. В конце концов, цель нашего исследования состоит именно в выяснении общего правдоподобия этого допущения. Поэтому, вместе с допущением о вычислительной природе нашего робота, допустим также, что его окружение также вычислимо. В результате мы получаем объеди­ненную систему, состоящую из робота и его обучающего окру­жения, которая, в принципе, допускает эффективное численное моделирование, т. е. окружение не дает никаких потенциальных оправданий невычислительному поведению вычислительного ро­бота.


Иногда можно услышать утверждение, что нашим преиму­ществом перед компьютерами мы обязаны тому факту, что лю­ди образуют сообщество, внутри которого происходит непре­рывное общение между индивидуумами. Согласно этому утвер­ждению, отдельного человека можно рассматривать как вычис­лительную систему, тогда как сообщество людей представляет собой уже нечто большее. То же относится и, в частности, к математическому сообществу и отдельным математикам — со­общество может вести себя невычислительным образом, в то время как отдельные математики такой способностью не обла­дают. На мой взгляд, это утверждение лишено всякого смысла. В самом деле, представьте себе аналогичное сообщество непре­рывно общающихся между собой компьютеров. Подобное «со­общество» в целом является точно такой же вычислительной си­стемой; деятельность его, если есть такое желание, можно смо­делировать и на одном-единственном компьютере. Разумеется, вследствие одного только количественного превосходства, со­общество составит гораздо более мощную вычислительную си­стему, нежели каждый из индивидуумов в отдельности, однако принципиальной разницы между ними нет. Известно, что на нашей планете проживает болеечеловек (прибавьте к этому еще огромные библиотеки накопленного знания). Цифры впечатляют, но это всего лишь цифры — если отдельного че­ловека считать вычислительным устройством, то разницу, обу­словленную переходом от индивидуума к сообществу, развитие компьютерных технологий сможет при необходимости свести на нет в течение каких-нибудь нескольких десятилетий. Очевидно, что искусственный случай с учителями-людьми в роли внешнего окружения не дает нам ничего принципиально нового, что могло бы объяснить, каким образом из целиком и полностью вычис­лительных составляющих возникает абсолютно невычислимая сущность.

Что же мы имеем в естественном случае? Вопрос теперь звучит так: может ли физическое окружение, не считая действий присутствующих в нем учителей-людей, содержать компоненты, которые невозможно даже в принципе смоделировать числен­ными методами? Мне думается, что если кто-то полагает, что в «бесчеловечном» окружении может присутствовать нечто, прин­ципиально не поддающееся численному моделированию, то этот кто-то тем самым лишает силы главное возражение против Ибо единственной разумной причиной усомниться в возможной справедливости точки зренияможно счесть лишь скептическое отношение к утверждению, что объекты, принадлежащие реаль­ному, физическому миру могут вести себя каким-то невычисли­мым образом. Как только мы признаём, что какой-либо физиче­ский процесс может оказаться невычислимым, у нас не остается никакого права отказывать в невычислимости и процессам, про­текающим внутри такого физического объекта, как мозг, — равно как и возражать против. Как бы то ни было, крайне малове­роятно, что в безлюдном окружении может обнаружиться нечто такое, что не поддается вычислению столь же фундаментально, как это делают некоторые процессы внутри человеческого тела. (См. также) Думаю, мало кто всерьез полагает, что среди всего, что имеет хоть какое-то отношение к окружению самообучающегося робота, может оказаться что-либо, принци­пиально невычислимое.