Файл: Пеноуз Роджер. Тени разума. В поисках науки о сознании.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 29.06.2024
Просмотров: 768
Скачиваний: 0
СОДЕРЖАНИЕ
1.2. Спасут ли роботы этот безумный мир?
1.3. Вычисление и сознательное мышление
1.5. Вычисление: нисходящие и восходящие процедуры
1.6. Противоречит ли точка зрения в тезису Черча—Тьюринга?
1.9. Невычислительные процессы
1.11. Обладают ли компьютеры правами и несут ли ответственность?
1.12. «Осознание», «понимание», «сознание», «интеллект»
1.13. Доказательство Джона Серла
1.14. Некоторые проблемы вычислительной модели
1.15. Свидетельствуют ли ограниченные возможности сегодняшнего ии в пользу ?
1.16. Доказательство на основании теоремы Гёделя
1.17. Платонизм или мистицизм?
1.18. Почему именно математическое понимание?
1.19. Какое отношение имеет теорема Гёделя к «бытовым» действиям?
1.20. Мысленная визуализация и виртуальная реальность
1.21. Является ли невычислимым математическое воображение?
2.1. Теорема Гёделя и машины Тьюринга
2.3. Незавершающиеся вычисления
2.4. Как убедиться в невозможности завершить вычисление?
2.5. Семейства вычислений; следствие Гёделя — Тьюринга
2.6. Возможные формальные возражения против
2.7. Некоторые более глубокие математические соображения
2.8. Условие -непротиворечивости
2.9. Формальные системы и алгоритмическое доказательство
2.10. Возможные формальные возражения против (продолжение)
Приложение а: геделизирующая машина тьюринга в явном виде
3 О невычислимости в математическом мышлении
формальной системой
Прежде чем мы приступим к подробному рассмотрению этого аргумента, необходимо обратить внимание на один существенный момент, который мы до сих пор незаслуженно игнорировали — речь идет о возможности привнесения на разных этапах процесса развития робота неких случайных элементов взамен раз и навсегда фиксированных механизмов. В свое время нам еще предстоит обратиться к этому вопросу, пока же я буду полагать, что каждый такой случайный элемент следует рассматривать как результат выполнения какого-либо псевдослучайного (хаотического) вычисления. Как было показано ранее, таких псевдослучайных компонентов на практике оказывается вполне достаточно. К случайным элементам в «образовании» робота мы еще вернемся вгде более подробно поговорим о подлинной случайности в применении к нашему случаю, а пока, говоря о «наборе механизмов», я буду предполагать, что все эти механизмы действительно являются целиком и полностью вычислительными и свободными от какой бы то ни было реальной
неопределенности.
Суть противоречия заключается в том, что на месте алгоритма, фигурировавшего в наших предыдущих рассуждениях (например, того алгоритма, о котором мы говорили вв связи с допущением), с неизбежностью оказывается формальная система Вследствие чего случайэффективно сводится
к случаюI и тем самым не менее эффективно из рассмотрения исключается. Выступая в рамках данного доказательства в роли сторонников точек зрения, мы предполагаем, что наш
робот, в принципе, способен (с помощью обучающих процедур той же природы, что установили для него мы) достичь в конечном счете любых математических результатов, каких в состоянии достичь человек. Мы должны также допустить, что робот способен достичь и таких результатов, какие человеку в принципе не по силам. Так или иначе, нашему роботу предстоит обзавестись способностью к пониманию мощи аргументации Гёделя (или, по крайней мере, способностью сымитировать такое понимание — согласно). Иначе говоря, относительно любой заданной
(достаточно обширной) формальной системы Н робот должен оказаться в силах неопровержимо установить тот факт, что из обоснованности системыследует истинность его гёделевского5 утвержденияа также то, что утверждениене является теоремой системыВ частности, робот сможет установить, что из обоснованности системынеопровержимо следует истинность утвержденияэта же обоснованность предполагает, что утверждениене является теоремой системы
С помощью в точности тех же рассуждений, какими мы воспользовались вприменительно к человеческому математическому пониманию, непосредственно из вышеизложенных соображений выводится, что робот никоим образом не способен твердо поверить в то, что совокупность его собственных — и, на его взгляд, неопровержимых — математических убеждений действительно эквивалентна некоей формальной системе И это несмотря на тот факт, что мы (выступая в роли соответствующих экспертов по проблемам ИИ) прекрасно осведомлены о том, что в основе системы математических убеждений робота лежит не что-нибудь, а именно набор механизмовчто автоматически означает, что система неопровержимых убеждений робота является полным эквивалентом системыЕсли бы робот вдруг твердо поверил в то, что все его убеждения укладываются в рамки системыто тогда ему пришлось бы поверить и в обоснованность этой самой системыСоответственно, ему также пришлось бы одновременно поверить и в истинность утверждения и в то, что упомянутое утверждение в его систему убеждений не входит — неразрешимое противоречие! Иначе говоря, робот никак не может знать о том, что он сконструирован в соответствии с тем или иным набором механизмовА поскольку об этой особенности его конструкции знаем — или по крайней мере, в состоянии узнать — мы с вами, то получается, что нам доступны такие математические истины (например, утверждениекоторые роботу оказываются не по силам, хотя изначально предполагалось, что способности робота будут равны способностям человека (или даже превысят их).
3.15. Способы устранения фундаментального противоречия
Приведенное выше рассуждение можно рассматривать двояко — с точки зрения создавших робота людей либо с точки зрения самого робота. С человеческой точки зрения существует некоторая неопределенная вероятность того, что математику-человеку претензии робота на обладание неопровержимой истиной покажутся неубедительными, разве что упомянутый математик-человек примет во внимание какие-то отдельные конкретные аргументы из тех, что использует робот. Возможно, не все теоремы системычеловек сочтет неопровержимо истинными, кроме того, как нам помнится, интеллектуальные способности робота могут существенно превышать таковые же способности человека. Таким образом, можно утверждать, что одно лишь знание о том, что робот сконструирован в соответствии с неким набором механизмовне следует рассматривать в качестве неопровержимо убедительной (для человека) математической демонстрации. Соответственно, мы должны пересмотреть все вышеприведенное рассуждение — на этот раз с точки зрения робота. Какие огрехи в нашем обосновании в состоянии заметить (и использовать) робот?
По-видимому, наш робот располагает всего лишь четырьмя основными возможностями для нейтрализации фундаментального противоречия — при условии, конечно, что сам робот осведомлен о том, что он является в некотором роде вычислительной машиной.
(a) Возможно, что робот, принимая в целом утверждение о том, что в основе его конструкции лежит некий набор механизмовтем не менее, неизбежно остается неспособен безоговорочно поверить в этот факт.
(b) Возможно, что робот, будучи безоговорочно убежден в истинности каждого отдельного-утверждения в тот момент, когда он его формулирует, все же сомневается в достоверности полной системы своих-утверждений — соответственно, робот может не верить в то, что формальная системаи в самом деле лежит в основе всей его системы убеждений в отношении-высказываний.
(c) Возможно, что подлинный набор механизмовсущественно зависит от случайных элементов и не может быть адекватно описан через посредство неких известных результатов псевдослучайных вычислений, подаваемых на входное устройство робота.
(d) Возможно, что подлинный набор механизмовв действительности непознаваем.
В последующих девяти разделах представлен ряд веских аргументов, убедительно демонстрирующих, что первые три лазейки оказываются для робота, задавшегося целью обойти фундаментальное противоречие, совершенно бесполезными. Соответственно, робот (а вместе с ним и мы — если мы, конечно, продолжаем настаивать на том, что математическое понимание можно свести к вычислению) начинает всерьез подумывать о не очень привлекательной возможностиУверен, что непривлекательной возможностьнахожу не я один — думаю, в этом со мной согласятся и те читатели, которым не безразлична судьба идеи искусственного интеллекта. Ее, пожалуй, приемлемо рассматривать лишь в качестве возможной мировоззренческой позиции, укладывающейся, по сути своей, в рамки той самой комбинации точек зренияо которой мы говорили в конце и согласно которой для внедрения непознаваемого алгоритма в «мозг» каждого из наших роботов требуется, ни много ни мало, божественное вмешательство (от «первого в мире программиста»). В любом случае, вердикт «непознаваемо», вынесенный в отношении тех самых механизмов, которые, в конечном счете, ответственны за наличие у нас какого ни на есть разума, вряд ли обрадует тех, кто намерен, вообще говоря, построить робота, наделенного подлинным искусственным интеллектом. Не особенно обрадует он и тех из нас, кто все еще надеется понять, принципиально и не выходя за рамки строго научного подхода, каким образом в действительности возникло у человека такое свойство, как интеллект, объяснить его происхождение посредством четко формулируемых научных законов — законов физики, химии, биологии, законов естественного отбора, в конце концов, — пусть даже и не имея в виду воспроизвести этот самый интеллект в каком бы то ни было робототехническом устройстве. Лично я полагаю, что подобный пессимистический вердикт не имеет под собой никаких оснований — по той хотя бы простой причине, что «научная постижимость» имеет весьма мало общего с «вычислимостью». Законы, лежащие в основе мыслительных процессов не являются непостижимыми, они всего лишь невычислимы. На эту тему мы еще поговорим во второй части книги.
3.16. Необходимо ли роботу верить в механизмы М?
Вообразим, что у нас имеется робот, снабженный некоторым возможным набором механизмов— каковой набор может оказаться тем самым, на основе которого и построен наш робот, но это не обязательно. Я попробую убедить читателя в том, что робот будет вынужден отвергнуть возможность того, что его математическое понимание опирается на набор механизмов независимо от того, как обстоит дело в действительности. При этом мы на время допускаем, что робот по тем или иным причинам уже отбросил вариантыи приходим к выводу (несколько даже неожиданному), что сам по себе вариант избежать парадокса не позволяет.
Рассуждать мы будем следующим образом. Обозначим черезгипотезу «В основе математического понимания робота лежит набор механизмов» и рассмотрим утверждение вида «Такое-то-высказывание является следствием из».
Такое утверждение (в том случае, когда робот твердо верит в его истинность) я буду называть -утверждением. Иначе говоря, под-утверждениями не обязательно понимаются те-высказывания, в истинность которых как таковых неопровержимо верит робот, но те-высказывания, которые робот полагает неопровержимо выводимыми из гипотезы. Изначально от робота не требуется обладание какими бы то ни было взглядами относительно возможности того, что в основе его конструкции действительно лежит набор механизмов Он может даже поначалу счесть такое предположение абсолютно невероятным, но, тем не менее, ничто не мешает ему рассмотреть (в подлинно научной традиции) возможные следствия из гипотезы о таком вот его происхождении.
Существуют ли-высказывания, которые робот должен полагать неопровержимыми следствиями из гипотезыи которые при этом не являются самыми обыкновенными-утверждениями, вовсе не требующими привлечения этой гипотезы? Разумеется, существуют. Как было отмечено в концеистинность hi-высказыванияследует из обоснованности формальной системыотсюда же следует и тот факт, что утверждениене является теоремой системы Более того, в этом робот будет совершенно безоговорочно убежден. Если допустить, что робот вполне согласен с тем, что все его неопровержимые убеждения укладывались бы в рамки системыбудь он действительно сконструирован в соответствии с набором механизмов— т. е. что возможность он из рассмотрения исключает, — то получается, что наш робот и в самом деле должен твердо верить в то, что обоснованность системыявляется следствием гипотезы. Таким образом, робот оказывается безоговорочно убежден как в том, что-высказываниеследует из гипотезы, так и в том, что (согласно) он не способен непосредственно постичь его неопровержимую истинность без привлечения(поскольку формальной системе оно не принадлежит). Соответственно, утверждениеявляется-утверждением, но не *-утверждением.
Предположим, что формальная системапостроена в точности так же, как и система, с той лишь разницей, что роль, которую при построении системы исполняли-утверждения, сейчас берут на себя-утверждения. Иначе говоря, теоремами системы являются либо(i) сами-утверждения, либоположения, выводимые из этих-утверждений с применением правил элементарной логики (см.). Точно так же, как робот на основании гипотезысогласен с тем, что формальная системаохватывает все его неопровержимые убеждения относительно истинности-высказываний, он будет согласен и с тем, что формальная системаохватывает все его неопровержимые убеждения относительно истинности-высказываний, обусловленных гипотезой
Далее предложим роботу рассмотреть гёделевское-высказываниеРобот, несомненно, проникнется неопровержимым убеждением в том, что это П1-высказывание является следствием из обоснованности системыОн также вполне безоговорочно поверит в то, что обоснованность системыявляется следствием гипотезыпоскольку он согласен с тем, что системадействительно содержит в себе все, в чем робот неопровержимо убежден в отношении своей способности выводить-высказывания, основываясь на гипотезе(Он будет рассуждать следующим образом: «Если я принимаю гипотезу, то я тем самым принимаю и все П1-высказывания, которые порождают системуТаким образом, я должен согласиться с тем, что системаявляется обоснованной на основании гипотезы. Следовательно, на основании все той же гипотезы, я должен признать и то, что утверждениеистинно».)
Однако, поверив (безоговорочно) в то, что гёделевское высказываниеявляется следствием гипотезы робот будет вынужден будет поверить и в то, что утверждениеявляется теоремой формальной системы А в это он сможет поверить только в том случае, если он полагает системунеобоснованной, — что решительно противоречит принятию им гипотезы
В некоторых из вышеприведенных рассуждений неявно допускалось, что неопровержимая убежденность робота является действительно обоснованной, — хотя необходимо лишь, чтобы сам робот просто верил в обоснованность своей системы убеждений. Впрочем, мы изначально предполагаем, что наш робот обладает математическим пониманием, по крайней мере, на человеческом уровне, а человеческое математическое понимание, как было показано впринципиально является обоснованным.
Возможно, кто-то усмотрит в формулировке допущения равно как и в определении-утверждения, некоторую неоднозначность. Смею вас уверить, что подобное утверждение, будучи-высказыванием, представляет собой в высшей степени определенное математическое утверждение. Можно предположить, что большинство-утверждений робота окажутся в действительности самыми обыкновенными-утверждениями, поскольку маловероятно, что робот при каких угодно обстоятельствах сочтет целесообразным прибегать в своих рассуждениях к самой гипотезе. Исключением может стать утверждениео котором говорилось выше, так как в данном случае формальная системавыступает, с точки зрения робота, в роли гёделевской гипотетической «машины для доказательства теорем»Вооружившись гипотезой, робот получает доступ к своей собственной «машине для доказательства теорем», и, хотя он не может быть (да и, скорее всего, не будет) безоговорочно убежден в обоснованности своей «машины», робот способен предположить, что она может оказаться обоснованной, и попытаться вывести следствия уже из этого предположения.