Файл: Пеноуз Роджер. Тени разума. В поисках науки о сознании.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.06.2024

Просмотров: 774

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Роджер пенроуз

1.2. Спасут ли роботы этот безумный мир?

1.3. Вычисление и сознательное мышление

1.4. Физикализм и ментализм

1.5. Вычисление: нисходящие и восходящие процедуры

1.6. Противоречит ли точка зрения в тезису Черча—Тьюринга?

1.7. Хаос

1.8. Аналоговые вычисления

1.9. Невычислительные процессы

1.10. Завтрашний день

1.11. Обладают ли компьютеры правами и несут ли ответственность?

1.12. «Осознание», «понимание», «сознание», «интеллект»

1.13. Доказательство Джона Серла

1.14. Некоторые проблемы вычислительной модели

1.15. Свидетельствуют ли ограниченные возможности сегодняшнего ии в пользу ?

1.16. Доказательство на основании теоремы Гёделя

1.17. Платонизм или мистицизм?

1.18. Почему именно математическое понимание?

1.19. Какое отношение имеет теорема Гёделя к «бытовым» действиям?

1.20. Мысленная визуализация и виртуальная реальность

1.21. Является ли невычислимым математическое воображение?

Примечания

2 Геделевское доказательство

2.1. Теорема Гёделя и машины Тьюринга

2.2. Вычисления

2.3. Незавершающиеся вычисления

2.4. Как убедиться в невозможности завершить вычисление?

2.5. Семейства вычислений; следствие Гёделя — Тьюринга

2.6. Возможные формальные возражения против

2.7. Некоторые более глубокие математические соображения

2.8. Условие -непротиворечивости

2.9. Формальные системы и алгоритмическое доказательство

2.10. Возможные формальные возражения против (продолжение)

Примечания

Приложение а: геделизирующая машина тьюринга в явном виде

3 О невычислимости в математическом мышлении

3.1. Гёдель и Тьюринг

О психофизи(ологи)ческой проблеме

Р.Пенроуз. Тени ума: в поисках потерянной науки о сознании. Penrose r. Shadows of the mind: a search for the missing science of consciousness. - Oxford, 1994. - XVI, 457 p.

В связи с этими соображениями возникает один весьма важ­ный вопрос: чьи же концепции, восприятие, неопровержимые убеждения следует считать значимыми — наши или роботов? Можно ли полагать, что робот действительно обладает убе­ждениями или способен что-либо осознавать? Если читатель придерживается точки зрения, то он, возможно, сочтет такой вопрос несколько неуместным, поскольку сами понятия «осозна­ния» или «убеждения» относятся к описанию процесса мышле­ния и поэтому никоим образом неприменимы к целиком компью­терному роботу. Однако в рамках настоящего рассуждения нет необходимости в том, чтобы наш гипотетический робот и в самом деле обладал какими-то подлинными ментальными качествами, коль скоро мы допускаем, что он способен внешне вести себя в точности подобно математику-человеку — в полном соответ­ствии с самыми строгими формулировками как, так и. Нам не нужно, чтобы робот действительно понимал, осознавал или верил, достаточно того, что внешне он проявляет себя в точно­сти так, будто он этими ментальными качествами в полной мере обладает. Подробнее об этом мы поговорим в

Точка зренияне отличается принципиально отв том, что касается ограничений, налагаемых на возможную манеру поведения робота, однако сторонники, скорее всего, питают несколько меньшие надежды в отношении тех высот, которых на деле может достичь робот, или вероятности создания вычис­лительной системы, которую можно было бы полагать способной на эффективное моделирование деятельности мозга человека, оценивающего обоснованность того или иного математического рассуждения. Подобное человеческое восприятие предполагает все же некоторое понимание смысла затронутых математических концепций. Согласно точке зрения, во всем этом нет ничего, выходящего за рамки некоторого свойства вычисления, связан­ного с понятием «смысла», тогда какрассматривает смысл в качестве семантического аспекта мышления и не допускает возможности его описания в чисто вычислительных терминах. В этом мы согласны с точкой зренияи отнюдь не ожидаем от нашего робота способности действительно ощущать тонкие се­мантические различия. Таким образом, сторонники, возможно, менее (нежели сторонники) склонны предполагать, что какой бы то ни было робот, сконструированный в соответствии с обсу­ждаемыми здесь принципами, окажется когда-либо способен на демонстрацию тех внешних проявлений человеческого понима­ния, какие свойственны математикам-людям. Полагаю, отсюда можно сделать вывод (не такой, собственно, и неожиданный), что сторонниковбудет существенно легче обратить в привержен­цев, чем сторонников; впрочем, для нашего дальнейшего


исследования разница между A и B существенного значения не имеет.

В качестве заключения отметим, что, хотя истинность ма­тематических утверждений нашего робота, получаемых посред­ством преимущественно восходящей системы вычислительных процедур, носит заведомо предварительный и предположитель­ный характер, следует допустить, что роботу действительно при­сущ некоторый достаточно «прочный» уровень неопровержи­мой математической «убежденности», вследствие чего некото­рые из его утверждений (которым он будет присваивать некий особый статус — обозначаемый, скажем, знаком *(звёздочка)) следует счи­тать неопровержимо истинными — согласно собственным кри­териям робота. О допустимости ошибочного присвоения роботом статуса * — пусть им же и исправимом — мы поговорим в § 3.19. А до той поры будем полагать, что всякое -*-утверждение робота следует рассматривать как безошибочное.

3.13. Механизмы математического поведения робота

Рассмотрим различные механизмы, лежащие в основе про­цедур, управляющих поведением робота в процессе получения им *-утверждений. Некоторые из этих процедур являются по отношению к роботу внутренними — некоторые нисходящие внутренние ограничители, встроенные в модель функционирова­ния робота, а также те или иные заранее определенные восходя­щие процедуры, посредством которых робот улучшает качество своей работы (с тем чтобы постепенно достичь *-уровня). Ра­зумеется, мы полагаем, что все эти процедуры, в принципе, по­знаваемы человеком (хотя окончательный результат совокупного действия всех этих разнообразных факторов вполне может ока­заться за пределами вычислительных способностей математика-человека). В самом деле, если мы допускаем, что человеческие существа в один прекрасный день сконструируют робота, наде­ленного подлинным математическим талантом, то следует непре­менно допустить и то, что человек способен понять внутренние принципы, в соответствии с которыми будет построен этот робот, иначе любое подобное начинание обречено на провал.

Безусловно, мы отдаем себе отчет в том, что создание такого робота вполне может оказаться многоступенчатым процессом:

иначе говоря, возможно, что наш робот-математик будет целиком и полностью построен какими-либо роботами «низшего порядка» (которые сами не способны на подлинно математическую дея­тельность), а эти роботы, в свою очередь, построены другими роботами еще более низкого порядка. Однако запущена в про­изводство вся эта иерархическая цепочка будет все равно челове­ком, и исходные правила ее построения (по всей видимости, некая комбинация нисходящих и восходящих процедур) будут в любом случае доступны человеческому пониманию.


Существенно важными для процесса развития робота явля­ются и всевозможные внешние факторы, привносимые окруже­нием. Внешний мир и в самом деле может обеспечить нашего ро­бота весьма значительным объемом вводимых данных, поступа­ющих как от учителей-людей (или роботов), так и из наблюдений за естественным физическим окружением. Что до естественных внешних факторов, привносимых «безлюдным» окружением, то «непознаваемыми» их, как правило, не считают. Эти факторы могут быть очень сложными, часто они взаимодействуют между собой, и все же эффективное «виртуально-реальное» модели­рование существенных аспектов нашего окружения уже вполне осуществимо (см. § 1.20). По-видимому, ничто не мешает моди­фицировать эти модели таким образом, чтобы робот с их помо­щью получал все, что ему нужно для развития в смысле внеш­них естественных факторов, — не забывая при этом о том, что вполне достаточно смоделировать типичное окружение, вос­производить какое-то реально существующее необходимости нет (см.).

Вмешательство в процесс людей (или роботов) — т. е. внеш­них, «искусственных» факторов — может происходить на раз­личных его этапах, однако это никоим образом не влияет на суще­ственную познаваемость механизмов этого вмешательства, при условии, разумеется, что мы допускаем возможность каким-то познаваемым образом «механизировать» вмешательство челове­ка. Справедливо ли такое допущение? Думаю, вполне естествен­но (по крайней мере, для сторонника точки зрения) предположить, что любое человеческое вмешательство в про­цесс развития робота и в самом деле можно заменить какими-либо целиком и полностью вычислительными процедурами. Мы же не требуем, чтобы в этом вмешательстве непременно присут­ствовало что-либо непостижимо мистическое — скажем, некая неопределимая «сущность», какую учитель-человек должен был бы передавать своему ученику-роботу в процессе обучения. Мы полагаем, что при обучении роботу необходимо получать всего лишь те или иные фундаментальные сведения, а передачу ему этих сведений проще всего поручить именно человеку. Весьма вероятно, что, как и в случае с учениками-людьми, наиболее эф­фективной будет передача информации в интерактивной форме, когда поведение учителя зависит от реакции ученика. Однако и это обстоятельство, само по себе, отнюдь не исключает возмож­ности эффективно вычислительного поведения учителя. В конце концов, все наши рассуждения в настоящей главе представляют собой одно сплошное reductio ad absurdum, в рамках которого мы допускаем, что в поведении человеческих существ вообще нет ничего существенно невычислимого. А тем, кто уже и так при­держивается точек зрения(эти последние, несомненно, склонны, скорее, поверить в возможность существования упомя­нутой выше невычислимой «сущности», передаваемой роботу в силу одного лишь человеческого происхождения учителя), все эти доказательства в любом случае совершенно не нужны.


Если рассматривать все эти механизмы (т. е. внутренние вы­числительные процедуры и данные, поступающие от интерактив­ного внешнего окружения) в совокупности, то создается впечат­ление, что нет каких-либо разумных причин полагать их прин­ципиально непознаваемыми, — даже если кто-то и настаивает на том, что, на практике, в точности просчитать результирую­щие проявления внешних из упомянутых механизмов не в силах человеческих (и даже не в силах любого из существующих или предвидимых в обозримом будущем компьютеров). К вопросу о познаваемости вычислительных механизмов мы еще вернемся, причем довольно скоро (в конце). А пока допустим, что

все эти механизмы действительно познаваемы, и обозначим на­бор таких механизмов буквойВозможно ли, что некоторые из полученных с помощью этих механизмов утверждений-уровня окажутся, тем не менее, непознаваемыми для человека? Обосно­ванно ли такое предположение? Вообще говоря, нет — при усло­вии, что в данном контексте мы продолжаем интерпретировать понятие «познаваемости» в том же принципиальном смысле, который мы применяли в отношении случаеви который был исчерпывающе определен в началеТот факт, что нечто (например, формулировка некоего-утверждения) может оказаться за пределами невооруженных вычислительных способностей человеческого существа, к данному случаю отношения не имеет. Ничуть не возбраняется и «вооружить» человека теми или иными средствами содействия мыслительным процессам — например, карандашом и бумагой, карманным калькулятором либо универ­сальным компьютером в комплекте с программным обеспечением нисходящего типа. Даже если добавить к уже имеющимся вы­числительным процедурам какие-либо восходящие компоненты, то мы не получим ничего такого, чего не могли бы в принципе получить раньше — при условии, разумеется, что лежащие в основе этих восходящих процедур фундаментальные механизмы доступны человеческому пониманию. С другой стороны, вопрос о «познаваемости» самих механизмовследует рассматривать уже в «практическом» смысле — в полном соответствии с при­нятой втерминологией. Таким образом, на данный момент мы полагаем, что механизмыявляются действительно позна­ваемыми практически.

Обладая знанием механизмовмы можем использовать их при создании фундамента для построения формальной систе­мы, при этом теоремами такой системы станут следую­щие положения: -утверждения, непосредственно следующие из применения упомянутых механизмов, илюбые положе­ния, выводимые из этих-утверждений с применением правил элементарной логики. Под «элементарной логикой» здесь могут пониматься, скажем, правила исчисления предикатов (описан­ные в) или какая-либо иная столь же прямая и четко опреде­ленная неопровержимая система аналогичных логических правил (вычислительных). Мы вполне способны построить формальную системув силу того простого факта, что процедура, посредством которой из набора механизмовполучаются, одно за другим, необходимые-утверждения, является процедурой вычислительной (пусть на практике и весьма громоздкой). От­метим, что определяемая таким образом процедурабудет генерировать утверждения группы однако вовсе не обяза­тельно все положения группы(поскольку можно допустить, что нашему роботу, по всей вероятности, попросту надоест тупо выводить все логические следствия из вырабатываемых им теорем). Таким образом, процедуране эквивалентна в точ­ности формальной системеоднако различие между ними не существенно. К тому же ничто не мешает нам при желании


получить из процедурыдругую процедуру — такую, например, которая будет эквивалентна

Далее, для интерпретации формальной системынеобходимо каким-то образом устроить так, чтобы на всем протя­жении развития робота статусвсегда и непременно означал, что удостоенное его утверждение действительно следует пола­гать неопровержимо доказанным. В отсутствие поступающих от учителя-человека (неважно, в какой форме) внешних данных мы не можем быть уверенными в том, что робот не выработает само­стоятельно некий отличный от нашего язык, в котором символ будет иметь совершенно иное значение (либо вовсе окажется бессмысленным). Для того чтобы определение формальной си­стемына языке робота согласовывалось с нашим ее опре­делением,необходимо в процессе обучения робота (например, учителем-человеком) проследить за тем, чтобы присваиваемое символу значение в точности соответствовало тому значению, какое внего вкладываем мы. Необходимо также проследить и за тем, чтобы система обозначений, которой робот фактически пользуется при формулировке своих, скажем,-высказываний, в точности совпадала с аналогичной системой, имеющей хожде­ние у нас (или допускала какое-либо явное преобразование в нашу систему). Если допустить, что механизмыпознаваемы человеком, то из вышесказанного следует, что аксиомы и пра­вила действия формальной системытакже должны быть познаваемыми. Более того, и всякую теорему, выводимую в рам­ках системы, следует, в принципе, полагать познаваемой человеком (втом смысле, что мы в состоянии понять ее описание, а не определить в обязательном порядке ее неопровержимую ис­тинность), даже если вычислительные процедуры, необходимые для получения большей части таких теорем, окажутся далеко за пределами невооруженных вычислительных способностей чело­века.

3.14. Фундаментальное противоречие Предшествующая дискуссия, в сущности, показывает, что «непознаваемый и неосознаваемый алгоритм F», который, со­гласно допущению, лежит в основе восприятия математиче­ской истины, вполне возможно свести к алгоритму осознанно по­знаваемому — при условии, что нам, следуя заветам адептов ИИ,

удастся запустить некую систему процедур, которые в конечном счете приведут к созданию робота, способного на математические рассуждения на человеческом (а то и выше) уровне. Непозна­ваемый алгоритмзаменяется при этом вполне познаваемой