Файл: Пеноуз Роджер. Тени разума. В поисках науки о сознании.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 29.06.2024
Просмотров: 767
Скачиваний: 0
СОДЕРЖАНИЕ
1.2. Спасут ли роботы этот безумный мир?
1.3. Вычисление и сознательное мышление
1.5. Вычисление: нисходящие и восходящие процедуры
1.6. Противоречит ли точка зрения в тезису Черча—Тьюринга?
1.9. Невычислительные процессы
1.11. Обладают ли компьютеры правами и несут ли ответственность?
1.12. «Осознание», «понимание», «сознание», «интеллект»
1.13. Доказательство Джона Серла
1.14. Некоторые проблемы вычислительной модели
1.15. Свидетельствуют ли ограниченные возможности сегодняшнего ии в пользу ?
1.16. Доказательство на основании теоремы Гёделя
1.17. Платонизм или мистицизм?
1.18. Почему именно математическое понимание?
1.19. Какое отношение имеет теорема Гёделя к «бытовым» действиям?
1.20. Мысленная визуализация и виртуальная реальность
1.21. Является ли невычислимым математическое воображение?
2.1. Теорема Гёделя и машины Тьюринга
2.3. Незавершающиеся вычисления
2.4. Как убедиться в невозможности завершить вычисление?
2.5. Семейства вычислений; следствие Гёделя — Тьюринга
2.6. Возможные формальные возражения против
2.7. Некоторые более глубокие математические соображения
2.8. Условие -непротиворечивости
2.9. Формальные системы и алгоритмическое доказательство
2.10. Возможные формальные возражения против (продолжение)
Приложение а: геделизирующая машина тьюринга в явном виде
3 О невычислимости в математическом мышлении
Далее нам предстоит показать, что еслипри достаточно большомтоОтсюда, соответственно, последует, что и-высказываниедолжно оказаться в пределах досягаемости системыпри условии, что роботы принимаютс-убежденностью. Доказав, что
мы докажем и то, чтобуквой мы обозначили значениеприЕдинственная возможная сложность здесь обусловлена тем обстоятельством, что сама величиназависит от с, хотя и не обязательно очень сильно. Эта зависимостьот с имеет две различных причины. Во-первых, число с являет собой явный предел степени сложности тех-высказываний, которые в определении формальной системыназываются «безошибочными-утверждениями», вторая же причина происходит из того факта, что система явным образом обусловлена выбором чисели можно предположить, что для принятия в качестве «безошибочного»-утверждения большей сложности необходимы какие-то более жесткие критерии.
Относительно первой причины зависимостиот с отметим, что описание действительной величины числа с необходимо задавать в явном виде только однажды (после чего внутри системы достаточно обозначения с). Если при задании величины с используется чисто двоичное представление, то (при больших с) такое описание дает всего-навсего логарифмическую зависимость от с (поскольку количество знаков в двоичном представлении натурального п равно приблизительно). Вообще говоря, учитывая, что число с интересует нас лишь в качестве возможного предела, точное значение которого находить вовсе не обязательно, мы можем поступить гораздо более остроумным образом. Например, числоспоказателями можно задать с помощью s символов или около того, и вовсе нетрудно подыскать примеры, в которых величина задаваемого числа возрастает с ростомеще быстрее. Сгодится любая вычислимая функция от s. Иными словами, для того чтобы задать предел с (при достаточно большом значении с), необходимо всего лишь несколько символов.
Что касается второй причины, т. е. зависимости от с чиселто, в силу вышеизложенных соображений, представляется очевидным, что для задания величин этих чисел (в особенности, их возможных предельных значений) совершенно не требуется, чтобы количество знаков в их двоичном представлении возрастало так же быстро, как с, более чем достаточно будет и, скажем, обыкновенной логарифмической зависимости от с. Следовательно, мы с легкостью можем допустить, что зависимость величиныот с является не более чем грубо логарифмической, а также устроить так, чтобы само число с всегда было больше этой величины.
Согласимся с таким выбором с и будем в дальнейшем вместозаписывать. Итак,есть формальная система, теоремами которой являются все математические высказывания, какие можно вывести из конечного количества утверждений, используя стандартные логические правила (исчисление предикатов). Количество этих -утверждений конечно, поэтому разумным будет предположить, что для гарантии их действительной безошибочности вполне достаточно некоторого набора постоянныхЕсли роботы верят в это с-убежденностью, то они, несомненно,-заключат, что гёделевское предположениетакже истинно на основании гипотезы, поскольку является П1-высказыванием меньшей, нежели с, сложности. Рассуждение для получения утвержденияиз-убежденности в обоснованности формальной системыдостаточно просто (в сущности, я его уже привел), так что с присвоением этому утверждению статусапроблем возникнуть не должно. То есть самотакже должно быть теоремой системы. Это, однако, противоречит убежденности роботов в обоснованности. Таким образом, упомянутая убежденность (при условии справедливости гипотезыи достаточно больших числах) оказывается несовместимой с убежденностью в том, что поведением роботов действительно управляют механизмы— а значит, механизмыповедением роботов управлять не могут.
Как же роботы могут удостовериться в том, что были выбраны достаточно большие числа? Никак. Вместо этого они могут выбрать некоторый набор таких чисел и попробовать допустить, что те достаточно велики, — и прийти в результате к противоречию с исходным предположением, согласно которому их поведение обусловлено набором механизмовДалее они вольны предположить, что достаточным окажется набор из несколько больших чисел, — снова прийти к противоречию и т.д. Вскоре они сообразят, что к противоречию они приходят при любом выборе значений (вообще говоря, здесь нужно учесть, помимо прочего, небольшой технический момент, суть которого состоит в том, что при совершенно уже запредельных значениях значение с также должно будет несколько подрасти — однако это неважно). Таким образом, получая один и тот же результат вне зависимости от значений, роботы — равно как, по всей видимости, и мы — приходят к заключению, что в основе их математических мыслительных процессов не может лежать познаваемая вычислительная процедуракакой бы она ни была.
3.21. Окончателен ли приговор?
Отметим, что к такому же выводу мы придем и в случае принятия нами самых разных возможных мер предосторожности, причем вовсе необязательно подобных тем, что я предлагал выше. Наверняка в предложенную модель можно еще внести множество усовершенствований. Можно, например, предположить, что роботы в результате длительной работы впадают в «старческое слабоумие», их сообщества вырождаются, а стандарты падают, т. е. увеличение числа Т выше определенного значения на деле увеличивает и вероятность ошибки в-утверждениях. С другой стороны, если слишком большим сделатьто возникает риск исключить вообще все-утверждения из-за существующего в сообществе меньшинства «глупых» роботов, разражающихся время от времени произвольными-утверждениями, которые в данном случае не перекроются необходимым количеством-утверждений, формулируемых роботами здравомыслящими. Несомненно, не составит большого труда такой риск полностью исключить, введя еще несколько ограничивающих параметров или, скажем, сформировав группу элитных роботов, силами которых рядовые члены сообщества будут непрерывно тестироваться на предмет адекватности своих интеллектуальных способностей, и потребовав к тому же, чтобы статусприсваивался утверждениям только с одобрения всего сообщества роботов в целом.
Существует и много других возможностей улучшения качества-утверждений или исключения ошибочных утверждений из общего (конечного) их числа. Кого-то, возможно, обеспокоит тот факт, что, несмотря на установление предела с сложности-высказываний, ограничивающего общее количество кандидатов наилистатус до некоторой конечной величины, эта величина окажется все же чрезвычайно огромной (будучи экспоненциально зависимой от с), вследствие чего становится весьма сложно однозначно удостовериться, что исключены все возможные ошибочныеутверждения. В самом деле, никакого ограничения не задается в рамках нашей модели на количество «робото-вычислений», необходимых для получения удовлетворительного'-доказательства какого-либо из-высказываний. Следует ввести четкое правило: чем длиннее в таком доказательстве цепь рассуждений, тем более жесткие критерии применяются при решении вопроса о присвоении ему-статуса. В конце концов, математики-люди реагировали бы именно так. Прежде чем принять в качестве неопровержимого доказательства собрание многочисленных путаных аргументов, мы, естественно, чрезвычайно долго и придирчиво его изучаем. Аналогичные соображения, разумеется, применимы и к тому случаю, когда предложенное доказательство на предмет его соответствия-статусу исследуют роботы.
Вышеприведенные рассуждения в равной степени справедливы и в случае любой дальнейшей модификации условий, имеющих целью устранение ошибок, при условии, что характер такой модификации в некоем широком смысле аналогичен характеру уже предложенных. Для того чтобы эти рассуждения работали, необходимо лишь наличие какого угодно четко сформулированного и вычислимого условия, достаточного для устранения всех ошибочных-утверждений. В результате мы приходим к строгому выводу: никакие познаваемые механизмы, пусть и снабженные какими угодно вычислительными «подпорками», не способны воспроизвести корректное математическое умозаключение человека.
Мы рассматривали-утверждения, которые, оказавшись по той или иной причине ошибочными, в принципе исправимы самими роботами, — пусть даже в каком-то конкретном экземпляре модели роботова сообщества эти утверждения так и остаются неисправленными. Что же еще может означать (в операционном смысле) фраза «в принципе исправимы», как не «исправимы средствами некоторой общей процедуры, подобной тем, что предложены выше»? Ошибка, которую не исправил позднее тот робот, что ее допустил, может быть исправлена каким-либо другим роботом — более того, большинство потенциально существующих экземпляров первого робота эту конкретную ошибку вообще не допустят. Делаем вывод (с одной, по-видимому, незначительной оговоркой, суть которой в том, что хаотические компоненты нашей модели можно еще заменить на подлинно случайные; см. ниже,): никакой набор познаваемых вычислительных правил(неизменных нисходящих, «самосовершенствующихся» восходящих либо и тех, и других в какой угодно пропорции) не может обусловливать поведение нашего сообщества роботов, равно как и отдельных его членов, — если исходить из допущения, что роботы способны достичь человеческого уровня математического понимания. Вообразив, что мы сами функционируем как управляемые вычислительными правилами роботы, мы оказываемся перед непреодолимым противоречием.
3.22. Спасет ли вычислительную модель разума хаос?
Вернемся ненадолго к вопросу о хаосе. Хотя, как неоднократно подчеркивается в этой книге (в частности, в), хаотические системы в том виде, в каком они обычно рассматриваются, представляют собой всего-навсего особого рода вычислительные системы, довольно широко распространено мнение о том, что феномен хаоса может иметь весьма значительное отношение к деятельности мозга. В представленных выше рассуждениях я опирался, с одной стороны, на обоснованное, как мне кажется, предположение, согласно которому любое хаотическое вычислительное поведение можно без существенной потери функциональности заменить поведением подлинно случайным. Против такого допущения можно привести, по крайней мере, одно вполне оправданное возражение. Поведение хаотической системы — пусть мы и ожидаем от него огромной сложности в мельчайших деталях и видимой случайности — в действительности случайным не является. В самом деле, многие хаотические системы демонстрируют весьма интересное сложное поведение, явно отклоняющееся от чистой случайности. (Иногда для описания сложного неслучайного поведения, демонстрируемого хаотическими системами, используется термин «край хаоса».) Возможно ли, чтобы именно в хаосе крылась разгадка тайны человеческого интеллекта? Если это так, то нам предстоит понять нечто доселе абсолютно неведомое относительно того, как ведут себя в соответствующих ситуациях хаотические системы. Хаотической системе в такой ситуации придется очень близко аппроксимировать невычислительное поведение в асимптотическом пределе — или нечто подобное. Демонстрации такого поведения, насколько мне известно, еще никто не представлял. Возможность, тем не менее, интересная, и я надеюсь, что в последующие годы ею кто-нибудь всерьез займется.
И все же, безотносительно к упомянутой возможности, хаос может предоставить нам лишь очень сомнительный способ обойти неутешительное заключение, к которому мы пришли в предыдущем разделе. В представленных выше рассуждениях эффективная хаотическая неслучайность (т. е. непсевдослучайность) играла хоть какую-то роль один-единственный раз — когда мы рассматривали моделирование не просто «действительного» поведения нашего робота (или сообщества роботов), но полный ансамбль всех возможных действий роботов, согласующихся с заданным набором механизмовТа же аргументация применима и здесь, только на сей раз мы не станем включать в эту случайность хаотические результаты функционирования упомянутых механизмов. Впрочем, некоторые случайные элементы (например, в составе исходных данных, определяющих начальное состояние модели) присутствовать все же могут, а чтобы оперировать этой случайностью, мы можем вновь воспользоваться идеей ансамбля и тем самым получить возможность рассмотреть в процессе синхронного моделирования большое количество возможных альтернативных робото-историй. Однако само хаотическое поведение нам просто-напросто придется вычислять — в чем нет ничего странного: на практике, в математических примерах, хаотическое поведение обыкновенно и вычисляется на компьютере. Ансамбль возможных альтернатив окажется в данном случае не таким большим, каким он мог бы быть, допусти мы аппроксимацию хаоса случайностью. Однако в том случае ансамбль подобного размера был нужен лишь для того, чтобы мы могли лишний раз удостовериться в том, что устранили все возможные ошибки в-утверждениях роботов. Даже если ансамбль включает в себя всего одну «историческую линию» сообщества роботов, можно быть совершенно уверенным в том, что при достаточно жестком наборе критериев для присвоения статуса такие ошибки будут очень быстро устраняться либо самими их виновниками, либо какими-то другими роботами сообщества. В ансамбле умеренного размера, составленном из подлинно случайных элементов, устранение ошибок будет происходить более эффективно, при дальнейшем же расширении ансамбля посредством введения в него случайных аппроксимаций на замену подлинно хаотическому поведению сколько-нибудь существенного роста эффективности не предвидится. Вывод: хаос не избавит нас от проблем, связанных с созданием вычислительной модели разума.
3.23. Reductio ad absurdum — воображаемый диалог