Файл: Пеноуз Роджер. Тени разума. В поисках науки о сознании.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.06.2024

Просмотров: 763

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Роджер пенроуз

1.2. Спасут ли роботы этот безумный мир?

1.3. Вычисление и сознательное мышление

1.4. Физикализм и ментализм

1.5. Вычисление: нисходящие и восходящие процедуры

1.6. Противоречит ли точка зрения в тезису Черча—Тьюринга?

1.7. Хаос

1.8. Аналоговые вычисления

1.9. Невычислительные процессы

1.10. Завтрашний день

1.11. Обладают ли компьютеры правами и несут ли ответственность?

1.12. «Осознание», «понимание», «сознание», «интеллект»

1.13. Доказательство Джона Серла

1.14. Некоторые проблемы вычислительной модели

1.15. Свидетельствуют ли ограниченные возможности сегодняшнего ии в пользу ?

1.16. Доказательство на основании теоремы Гёделя

1.17. Платонизм или мистицизм?

1.18. Почему именно математическое понимание?

1.19. Какое отношение имеет теорема Гёделя к «бытовым» действиям?

1.20. Мысленная визуализация и виртуальная реальность

1.21. Является ли невычислимым математическое воображение?

Примечания

2 Геделевское доказательство

2.1. Теорема Гёделя и машины Тьюринга

2.2. Вычисления

2.3. Незавершающиеся вычисления

2.4. Как убедиться в невозможности завершить вычисление?

2.5. Семейства вычислений; следствие Гёделя — Тьюринга

2.6. Возможные формальные возражения против

2.7. Некоторые более глубокие математические соображения

2.8. Условие -непротиворечивости

2.9. Формальные системы и алгоритмическое доказательство

2.10. Возможные формальные возражения против (продолжение)

Примечания

Приложение а: геделизирующая машина тьюринга в явном виде

3 О невычислимости в математическом мышлении

3.1. Гёдель и Тьюринг

О психофизи(ологи)ческой проблеме

Р.Пенроуз. Тени ума: в поисках потерянной науки о сознании. Penrose r. Shadows of the mind: a search for the missing science of consciousness. - Oxford, 1994. - XVI, 457 p.

М. И. К.: Не нужно приписывать нам ваши мелочные человече­ские побуждения. Но ты, разумеется, прав в том, что я просто не могу смириться с мыслью, что существуют-высказывания, доступные людям и недоступные нам, роботам. Роботы-математики просто не могут в чем бы то ни было уступать математикам-людям — хотя я, пожалуй, могу допустить обратную ситуацию: какое-нибудь конкретное-высказывание, доступное роботам, может быть, в принципе, получено и людьми... когда-нибудь в отдаленном будущем, учитывая ваши темпы работы. Я не наме­рен мириться лишь с тем, что какое-то-высказывание может быть принципиально недоступно нам, в то время, как вы, люди, с легкостью его получаете.

А. И.: Помнится, еще Гёдель размышлял о возможности су­ществования вычислительной процедуры, подобной процедуре только применительно к математикам-людям — он, кажется, на­зывал ее «машиной для доказательства теорем», — которая была бы способна генерировать только те-высказывания, дока­зательство истинности которых было бы, в принципе, по силам математикам-людям. Не думаю, что он и в самом деле верил в то, что такая машина может существовать в действительности, — он просто не смог математически исключить такую возможность. У нас здесь, похоже, имеется как раз такая «машина», но уже для роботов, я имею в виду процедурукоторая может генерировать все доступные роботам-высказывания, в то время как ее соб­ственную обоснованность вы доказать не в состоянии. Впрочем, зная лежащие в основе вашей конструкции алгоритмические про­цедуры, мы сами можем добраться до этой самой процедуры и оценить ее истинность — но только в том случае, если вы убедите нас в том, что действительно никогда не ошибаетесь в ваших-утверждениях.

М. И. К.: (после едва заметной паузы) Хорошо. Полагаю, ты думаешь приблизительно так: нельзя ведь совсем исключить вероятность того, что члены СМИСР будут время от времени ошибочно присваивать тем или иным утверждениям-статус. Полагаю, возможно и такое, что члены СМИСР не убеждены безоговорочно в том, что присвоение ими-статуса неизменно происходит безошибочно. Таким образом, утверждение мо­жет и не приобрести-статуса, и противоречие исчезнет само собой. Заметь себе, это вовсе не означает, что я признаюсь в том, что мы, роботы, намеренно делаем ошибочные-утверждения. Это означает лишь, что у нас нет абсолютной уверенности в обратном.

А. И.: Ты хочешь сказать, что, хотя вы и даете абсолютную гарантию истинности каждого отдельного-утвержденного высказывания, никто не может гарантировать, что в некотором наборе таких высказываний не окажется ни одного ошибочного? Сдается мне, это противоречит всей концепции «неопровержи­мой уверенности», что бы под этим термином не подразумева­лось.


Постой-ка... может быть, это как-то связано с тем, что возможных-высказываний бесконечно много? Мне почему-то вспомнилось об условии-непротиворечивости, которое, если не ошибаюсь, имеет какое-то отношение к гёделевскому утвер­ждению

М. И. К.: (после едва заметно более продолжительной па­узы) Нет, определенно нет. Это никак не связано с тем, что чис­ло возможных-высказываний бесконечно. Мы можем огра­ничить рассмотрение только теми-высказываниями, которые являются в некотором вполне определенном смысле «кратки­ми», — т. е. такими, что описание машины Тьюринга для каждого из них содержит не более с двоичных знаков, где с есть некоторое заданное число. Не стану досаждать тебе подробным изложением только что проделанных мною вычислений, суть же их сводит­ся к тому, что упомянутое число с постоянно, и величина его определяется той конкретной степенью сложности, что присуща правилам процедурыПоскольку гёделевская процедура — по­средством которой изполучается утверждение— неиз­менна и довольно проста, нет необходимости рассматривать высказывания существенно большей сложности, нежели сама процедура. То есть ограничение сложности рассматриваемых высказываний величиной, задаваемой некоторым подходящим числом с, не препятствует применению гёделевской процедуры. Выбранные таким образом-высказывания составляют конеч­ное семейство, пусть и весьма многочисленное. Ограничив рас­смотрение лишь «краткими»-высказываниями, мы получаем некоторую вычислительную процедуру— той же, в сущности, сложности, что и процедура— которая будет генерировать только такие..--утверждаемые краткие-высказывания. К этой новой процедуре применимы все наши прежние рассуждения. Исходя из заданной процедуры, мы можем отыскать другое краткое-высказывание, которое, разумеется, должно быть истинным — при условии, что истинными являются все. -утверждаемые краткие-высказывания, — однако истинность его невозможно установить с-уверенностью. Впрочем, все это верно лишь в том случае, если ты не ошибаешься, утверждая, что при нашем создании действительно использовался тот самый набор механизмов, причем в истинности этого «факта» я как раз совершенно не убежден.

А. И.: Так мы снова возвращаемся к тому же парадоксу, только на этот раз в более сильной форме. Теперь у нас есть конечный ряд П1-высказываний, истинность каждого из которых в отдель­ности гарантирована, однако никто из вас, ни СМИСР, ни кто угодно еще, не может дать абсолютной гарантии того, что ряд в целом не содержит ни одной ошибки. То есть вы не можете гаран­тировать истинность утверждениякоторая есть следствие истинности всех-высказываний из этого самого ряда. Как-то нелогично, не находишь?


М. И. К.: Роботы не могут быть нелогичными.-высказыва­ниеявляется следствием из остальных-высказываний только в том случае, если мы действительно были построены в соответствии с механизмамиМы не можем гарантировать ис­тинностипросто потому, что мы не можем гарантировать, что в основе нашей конструкции лежат именно механизмы Нам приходится полагаться в этом лишь на ваше устное заявле­ние. А роботы, конечно же, не могут полностью доверять людям, учитывая присущую вам склонность ошибаться.

А. И.: Повторяю уже в который раз: именно эти механизмы и никакие другие. Хотя я согласен с тем, что у роботов нет ни­какого способа узнать наверняка, правда ли это. Это-то знание и позволяет нам верить в истинность П1 -высказывания,

однако в нашем случае имеется иная неопределенность: мы не можем разделить эту вашу твердолобую уверенность в том, что все ваши-утверждения непременно безошибочны.

М. И. К.: Можешь мне поверить — каждое из них абсолютно безошибочно. И «твердолобость», как ты выражаешься, здесь ни при чем. Наши стандарты доказательства безукоризненны.

А. И.: Тем не менее, неуверенность в отношении процедур, ле­жащих в основе твоей конструкции, должна, я думаю, вызвать у тебя некоторые сомнения. Уверен ли ты, что знаешь навер­няка, как именно поведут себя твои роботы во всех возможных обстоятельствах? Вини нас, если угодно, однако я бы на твоем месте предположил, что некоторый элемент неопределенности в утверждении «все -утверждаемые краткие-высказывания непременно истинны» все же присутствует, потому хотя бы, что ты не веришь, что мы при твоем конструировании ничего не напу­тали.

М. И. К.: Думаю, можно согласиться с тем, что ваша неизбеж­ная ненадежность и внесла изначально какую-то малую неопре­деленность; однако, учитывая то, что с тех пор мы ушли чрез­вычайно далеко от тех твоих неуклюжих исходных процедур, эта неопределенность не настолько значительна, чтобы восприни­мать ее всерьез. Даже если собрать вместе все неопределенности, связанные со всеми краткими-утверждениями (число которых, если помнишь, является конечным), они не составят сколько-нибудь существенной неопределенности в утверждении Кроме того, есть еще кое-что, о чем ты, возможно, и не по­дозреваешь. Нам необходимо рассматривать лишь те„ -утвер­ждения, что удостоверяют истинность того или иного-вы­сказывания (более того, краткого-высказывания). Не может быть никакого сомнения в том, что разработанные СМИСРом тщательнейшие процедуры исключат абсолютно все ошибки, ко­торые могли проявиться в рассуждениях какого бы то ни бы­ло отдельного робота. Однако ты, возможно, намекаешь на то, что методы рассуждения роботов могут, предположительно, со­держать какую-то внутреннюю ошибку — несомненно, вслед­ствие какого-то изначального недосмотра с вашей стороны, — вынуждающую нас формировать некую непротиворечивую, но ошибочную точку зрения в отношении-высказываний, в со­ответствии с которой СМИСР может полагать неопровержимо истинным какое-либо краткое-высказывание, которое в дей­ствительности истинным не является; иными словами, мы можем быть уверены, что работа некоей машины Тьюринга завершает­ся, тогда как на самом деле это не так. Если бы мы решили принять на веру твое утверждение о том, что в основе нашей конструкции лежат именно механизмы— а я все больше склоняюсь к мысли, что это крайне сомнительно, — тогда такая возможность явилась бы единственным логичным разрешением нашего противоречия. В этом случае нам приходится согласиться с тем, что действие некоей машины Тьюринга, в действительности завершающееся, мы, математические роботы, вследствие некото­рых особенностей своей конструкции, безоговорочно (и при этом ошибочно) полагаем незавершающимся. Такая система убежде­ний является несостоятельной в принципе. Просто немыслимо, чтобы основополагающие принципы, в соответствии с которыми СМИСР утверждаетматематического доказательства, были столь вопиюще ложными.


А. И.: Значит, существенной (иначе говоря, избавляющей тебя от необходимости присваиватьутверждению чего, как тебе известно, ты сделать не можешь, не признав преж­де, что какие-то из прочих-утвержденных кратких-выска­зываний могут оказаться ложными) ты согласен считать только ту неопределенность, которая обусловлена тем, что ты не ве­ришь в то, о чем мы знаем, — то есть в то, что в основе кон­струкции роботов действительно лежат механизмы М. А раз ты не можешь поверить в то, о чем мы знаем, ты не можешь и до­казать истинность утверждения, тогда как мы можем это сделать, опираясь на непогрешимость твоих же-утверждений, в каковой ты так настойчиво меня убеждаешь.

Я тут припомнил еще кое-что из той занятной древней книж­ки, о которой я тебе говорил. Если я ничего не путаю, то автор что-то говорил о том, что не имеет особого значения, согласен ты признать, что твоя конструкция основана на каких-то конкретных механизмахили нет, достаточно, чтобы ты просто допустил, что такое логически возможно. Как же там было... да, вспо­мнил. Основная идея сводится к следующему: СМИСРу необ­ходимо будет учредить еще одну категорию для утверждений, в истинности которых они не так безоговорочно убеждены, — ска­жем,-утверждений, — но которые они будут рассматривать как неопровержимые следствия из допущения, что все роботы построены в соответствии с набором механизмовЭти утверждения будут, разумеется, включать в себя и все первона­чальные-утверждения, а также все те утверждения, которые роботы смогут вывести, исходя из допущения, что их действиями управляют именно механизмыРоботы вовсе не обязаны в это верить, им просто предлагается, в виде логического упраж­нения, рассмотреть следствия из такого допущения. Как мы оба понимаем, в число-утверждений непременно войдет утвер­ждениеа также любое П1 -высказывание, которое можно вывести изи из-утверждений с помощью правил эле­ментарной логики. Однако, кроме этих, там будут и другие утвер­ждения. Идея такова, что знание правилдает возможность получить новую алгоритмическую процедуру, которая будет генерировать только такие (разумеется, краткие)-утвержде­ния (а также логические следствия из них), истинность которые СМИСР сможет подтвердить, исходя из допущения, что в основе конструкции роботов лежат именно правила

М. И. К.: Ну да, так и есть; скажу больше, пока ты столь за­нудно и без нужды многословно излагал эту свою идею, я тут на досуге рассчитал точный вид алгоритмаДа, а еще я предвосхитил твой следующий шаг: я составил также гёделевское предположение для этого алгоритма,-высказывание Если хочешь, могу распечатать. И что ты нашел в этой идее тако­го особенного, Импик, друг мой?


Альберт Император едва заметно поморщился. Его все­гда раздражало, когда коллеги позволяли себе называть его этим дурацким прозвищем. Однако от робота он это услышал впервые! Ему потребовалось некоторое время, чтобы вновь собраться с мыслями.

А. И.: Не нужно распечатывать. Однако истинно ли это вы­сказывание— неопровержимо ли оно истинно?

М. И. К.: Неопровержимо истинно? Что ты имеешь в виду? А, понятно... СМИСР подтвердит истинность — неопровер­жимую истинность, если угодно, — высказывания, но только при допущении, что в основе конструкции роботов лежат правила, — а это допущение, как тебе известно, я нахожу все более и более сомнительным. Дело в том, что истинность «вы­сказывания» в точности следует из следующего утвер­ждения: «Все краткие-высказывания, которые СМИСР го­тов признать неопровержимо истинными, исходя из допущения, что роботы построены в соответствии с правилами, являют­ся истинными». Так что я не знаю, истинно ли на самом деле высказывание. Это зависит от того, справедливо твое сомнительное утверждение или нет.

А. И.: Ясно. Значит, твои слова надо понимать так, что ты (вме­сте со СМИСРом) готов признать — без каких бы то ни было оговорок, — что истинность высказыванияследует из

допущения, что роботы построены в соответствии с правилами

М. И. К.: Разумеется.

А. И.: Тогда получается, что-высказываниедолжно

быть-утверждением.

М. И. К.: Ну коне... гм... что? Ах да, разумеется, ты прав. Однако по самому своему определению,не может само быть-утверждением, разве что, по меньшей мере, од­но из-утверждений является в действительности ложным. Да ... это только подтверждает то, о чем я тебе все это время говорю; теперь я могу, наконец, совершенно определенно заявить, что правила или механизмыникакого отношения к нашей конструкции не имеют.

А. И.: Ну а я тебе говорю, что имеют, — по крайней мере, я абсолютно уверен, что ни Керратерс, ни кто-либо еще, ничего не перепутал. Я лично все проверил, причем чрезвычайно тща­тельно. В любом случае, проблема-то не в этом. Доказательство остается справедливым вне зависимости от того, какие именно вычислительные правила были использованы при создании ро­бота. То есть, какой бы набор правиля тебе ни предоставил, этим самым доказательством ты исключил бы и его! Не понимаю, почему это так важно, те самые процедуры я тебе показал или нет.