Файл: Пеноуз Роджер. Тени разума. В поисках науки о сознании.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 29.06.2024
Просмотров: 763
Скачиваний: 0
СОДЕРЖАНИЕ
1.2. Спасут ли роботы этот безумный мир?
1.3. Вычисление и сознательное мышление
1.5. Вычисление: нисходящие и восходящие процедуры
1.6. Противоречит ли точка зрения в тезису Черча—Тьюринга?
1.9. Невычислительные процессы
1.11. Обладают ли компьютеры правами и несут ли ответственность?
1.12. «Осознание», «понимание», «сознание», «интеллект»
1.13. Доказательство Джона Серла
1.14. Некоторые проблемы вычислительной модели
1.15. Свидетельствуют ли ограниченные возможности сегодняшнего ии в пользу ?
1.16. Доказательство на основании теоремы Гёделя
1.17. Платонизм или мистицизм?
1.18. Почему именно математическое понимание?
1.19. Какое отношение имеет теорема Гёделя к «бытовым» действиям?
1.20. Мысленная визуализация и виртуальная реальность
1.21. Является ли невычислимым математическое воображение?
2.1. Теорема Гёделя и машины Тьюринга
2.3. Незавершающиеся вычисления
2.4. Как убедиться в невозможности завершить вычисление?
2.5. Семейства вычислений; следствие Гёделя — Тьюринга
2.6. Возможные формальные возражения против
2.7. Некоторые более глубокие математические соображения
2.8. Условие -непротиворечивости
2.9. Формальные системы и алгоритмическое доказательство
2.10. Возможные формальные возражения против (продолжение)
Приложение а: геделизирующая машина тьюринга в явном виде
3 О невычислимости в математическом мышлении
М. И. К.: Не нужно приписывать нам ваши мелочные человеческие побуждения. Но ты, разумеется, прав в том, что я просто не могу смириться с мыслью, что существуют-высказывания, доступные людям и недоступные нам, роботам. Роботы-математики просто не могут в чем бы то ни было уступать математикам-людям — хотя я, пожалуй, могу допустить обратную ситуацию: какое-нибудь конкретное-высказывание, доступное роботам, может быть, в принципе, получено и людьми... когда-нибудь в отдаленном будущем, учитывая ваши темпы работы. Я не намерен мириться лишь с тем, что какое-то-высказывание может быть принципиально недоступно нам, в то время, как вы, люди, с легкостью его получаете.
А. И.: Помнится, еще Гёдель размышлял о возможности существования вычислительной процедуры, подобной процедуре только применительно к математикам-людям — он, кажется, называл ее «машиной для доказательства теорем», — которая была бы способна генерировать только те-высказывания, доказательство истинности которых было бы, в принципе, по силам математикам-людям. Не думаю, что он и в самом деле верил в то, что такая машина может существовать в действительности, — он просто не смог математически исключить такую возможность. У нас здесь, похоже, имеется как раз такая «машина», но уже для роботов, я имею в виду процедурукоторая может генерировать все доступные роботам-высказывания, в то время как ее собственную обоснованность вы доказать не в состоянии. Впрочем, зная лежащие в основе вашей конструкции алгоритмические процедуры, мы сами можем добраться до этой самой процедуры и оценить ее истинность — но только в том случае, если вы убедите нас в том, что действительно никогда не ошибаетесь в ваших-утверждениях.
М. И. К.: (после едва заметной паузы) Хорошо. Полагаю, ты думаешь приблизительно так: нельзя ведь совсем исключить вероятность того, что члены СМИСР будут время от времени ошибочно присваивать тем или иным утверждениям-статус. Полагаю, возможно и такое, что члены СМИСР не убеждены безоговорочно в том, что присвоение ими-статуса неизменно происходит безошибочно. Таким образом, утверждение может и не приобрести-статуса, и противоречие исчезнет само собой. Заметь себе, это вовсе не означает, что я признаюсь в том, что мы, роботы, намеренно делаем ошибочные-утверждения. Это означает лишь, что у нас нет абсолютной уверенности в обратном.
А. И.: Ты хочешь сказать, что, хотя вы и даете абсолютную гарантию истинности каждого отдельного-утвержденного высказывания, никто не может гарантировать, что в некотором наборе таких высказываний не окажется ни одного ошибочного? Сдается мне, это противоречит всей концепции «неопровержимой уверенности», что бы под этим термином не подразумевалось.
Постой-ка... может быть, это как-то связано с тем, что возможных-высказываний бесконечно много? Мне почему-то вспомнилось об условии-непротиворечивости, которое, если не ошибаюсь, имеет какое-то отношение к гёделевскому утверждению
М. И. К.: (после едва заметно более продолжительной паузы) Нет, определенно нет. Это никак не связано с тем, что число возможных-высказываний бесконечно. Мы можем ограничить рассмотрение только теми-высказываниями, которые являются в некотором вполне определенном смысле «краткими», — т. е. такими, что описание машины Тьюринга для каждого из них содержит не более с двоичных знаков, где с есть некоторое заданное число. Не стану досаждать тебе подробным изложением только что проделанных мною вычислений, суть же их сводится к тому, что упомянутое число с постоянно, и величина его определяется той конкретной степенью сложности, что присуща правилам процедурыПоскольку гёделевская процедура — посредством которой изполучается утверждение— неизменна и довольно проста, нет необходимости рассматривать высказывания существенно большей сложности, нежели сама процедура. То есть ограничение сложности рассматриваемых высказываний величиной, задаваемой некоторым подходящим числом с, не препятствует применению гёделевской процедуры. Выбранные таким образом-высказывания составляют конечное семейство, пусть и весьма многочисленное. Ограничив рассмотрение лишь «краткими»-высказываниями, мы получаем некоторую вычислительную процедуру— той же, в сущности, сложности, что и процедура— которая будет генерировать только такие..--утверждаемые краткие-высказывания. К этой новой процедуре применимы все наши прежние рассуждения. Исходя из заданной процедуры, мы можем отыскать другое краткое-высказывание, которое, разумеется, должно быть истинным — при условии, что истинными являются все. -утверждаемые краткие-высказывания, — однако истинность его невозможно установить с-уверенностью. Впрочем, все это верно лишь в том случае, если ты не ошибаешься, утверждая, что при нашем создании действительно использовался тот самый набор механизмов, причем в истинности этого «факта» я как раз совершенно не убежден.
А. И.: Так мы снова возвращаемся к тому же парадоксу, только на этот раз в более сильной форме. Теперь у нас есть конечный ряд П1-высказываний, истинность каждого из которых в отдельности гарантирована, однако никто из вас, ни СМИСР, ни кто угодно еще, не может дать абсолютной гарантии того, что ряд в целом не содержит ни одной ошибки. То есть вы не можете гарантировать истинность утверждениякоторая есть следствие истинности всех-высказываний из этого самого ряда. Как-то нелогично, не находишь?
М. И. К.: Роботы не могут быть нелогичными.-высказываниеявляется следствием из остальных-высказываний только в том случае, если мы действительно были построены в соответствии с механизмамиМы не можем гарантировать истинностипросто потому, что мы не можем гарантировать, что в основе нашей конструкции лежат именно механизмы Нам приходится полагаться в этом лишь на ваше устное заявление. А роботы, конечно же, не могут полностью доверять людям, учитывая присущую вам склонность ошибаться.
А. И.: Повторяю уже в который раз: именно эти механизмы и никакие другие. Хотя я согласен с тем, что у роботов нет никакого способа узнать наверняка, правда ли это. Это-то знание и позволяет нам верить в истинность П1 -высказывания,
однако в нашем случае имеется иная неопределенность: мы не можем разделить эту вашу твердолобую уверенность в том, что все ваши-утверждения непременно безошибочны.
М. И. К.: Можешь мне поверить — каждое из них абсолютно безошибочно. И «твердолобость», как ты выражаешься, здесь ни при чем. Наши стандарты доказательства безукоризненны.
А. И.: Тем не менее, неуверенность в отношении процедур, лежащих в основе твоей конструкции, должна, я думаю, вызвать у тебя некоторые сомнения. Уверен ли ты, что знаешь наверняка, как именно поведут себя твои роботы во всех возможных обстоятельствах? Вини нас, если угодно, однако я бы на твоем месте предположил, что некоторый элемент неопределенности в утверждении «все -утверждаемые краткие-высказывания непременно истинны» все же присутствует, потому хотя бы, что ты не веришь, что мы при твоем конструировании ничего не напутали.
М. И. К.: Думаю, можно согласиться с тем, что ваша неизбежная ненадежность и внесла изначально какую-то малую неопределенность; однако, учитывая то, что с тех пор мы ушли чрезвычайно далеко от тех твоих неуклюжих исходных процедур, эта неопределенность не настолько значительна, чтобы воспринимать ее всерьез. Даже если собрать вместе все неопределенности, связанные со всеми краткими-утверждениями (число которых, если помнишь, является конечным), они не составят сколько-нибудь существенной неопределенности в утверждении Кроме того, есть еще кое-что, о чем ты, возможно, и не подозреваешь. Нам необходимо рассматривать лишь те„ -утверждения, что удостоверяют истинность того или иного-высказывания (более того, краткого-высказывания). Не может быть никакого сомнения в том, что разработанные СМИСРом тщательнейшие процедуры исключат абсолютно все ошибки, которые могли проявиться в рассуждениях какого бы то ни было отдельного робота. Однако ты, возможно, намекаешь на то, что методы рассуждения роботов могут, предположительно, содержать какую-то внутреннюю ошибку — несомненно, вследствие какого-то изначального недосмотра с вашей стороны, — вынуждающую нас формировать некую непротиворечивую, но ошибочную точку зрения в отношении-высказываний, в соответствии с которой СМИСР может полагать неопровержимо истинным какое-либо краткое-высказывание, которое в действительности истинным не является; иными словами, мы можем быть уверены, что работа некоей машины Тьюринга завершается, тогда как на самом деле это не так. Если бы мы решили принять на веру твое утверждение о том, что в основе нашей конструкции лежат именно механизмы— а я все больше склоняюсь к мысли, что это крайне сомнительно, — тогда такая возможность явилась бы единственным логичным разрешением нашего противоречия. В этом случае нам приходится согласиться с тем, что действие некоей машины Тьюринга, в действительности завершающееся, мы, математические роботы, вследствие некоторых особенностей своей конструкции, безоговорочно (и при этом ошибочно) полагаем незавершающимся. Такая система убеждений является несостоятельной в принципе. Просто немыслимо, чтобы основополагающие принципы, в соответствии с которыми СМИСР утверждаетматематического доказательства, были столь вопиюще ложными.
А. И.: Значит, существенной (иначе говоря, избавляющей тебя от необходимости присваиватьутверждению чего, как тебе известно, ты сделать не можешь, не признав прежде, что какие-то из прочих-утвержденных кратких-высказываний могут оказаться ложными) ты согласен считать только ту неопределенность, которая обусловлена тем, что ты не веришь в то, о чем мы знаем, — то есть в то, что в основе конструкции роботов действительно лежат механизмы М. А раз ты не можешь поверить в то, о чем мы знаем, ты не можешь и доказать истинность утверждения, тогда как мы можем это сделать, опираясь на непогрешимость твоих же-утверждений, в каковой ты так настойчиво меня убеждаешь.
Я тут припомнил еще кое-что из той занятной древней книжки, о которой я тебе говорил. Если я ничего не путаю, то автор что-то говорил о том, что не имеет особого значения, согласен ты признать, что твоя конструкция основана на каких-то конкретных механизмахили нет, достаточно, чтобы ты просто допустил, что такое логически возможно. Как же там было... да, вспомнил. Основная идея сводится к следующему: СМИСРу необходимо будет учредить еще одну категорию для утверждений, в истинности которых они не так безоговорочно убеждены, — скажем,-утверждений, — но которые они будут рассматривать как неопровержимые следствия из допущения, что все роботы построены в соответствии с набором механизмовЭти утверждения будут, разумеется, включать в себя и все первоначальные-утверждения, а также все те утверждения, которые роботы смогут вывести, исходя из допущения, что их действиями управляют именно механизмыРоботы вовсе не обязаны в это верить, им просто предлагается, в виде логического упражнения, рассмотреть следствия из такого допущения. Как мы оба понимаем, в число-утверждений непременно войдет утверждениеа также любое П1 -высказывание, которое можно вывести изи из-утверждений с помощью правил элементарной логики. Однако, кроме этих, там будут и другие утверждения. Идея такова, что знание правилдает возможность получить новую алгоритмическую процедуру, которая будет генерировать только такие (разумеется, краткие)-утверждения (а также логические следствия из них), истинность которые СМИСР сможет подтвердить, исходя из допущения, что в основе конструкции роботов лежат именно правила
М. И. К.: Ну да, так и есть; скажу больше, пока ты столь занудно и без нужды многословно излагал эту свою идею, я тут на досуге рассчитал точный вид алгоритмаДа, а еще я предвосхитил твой следующий шаг: я составил также гёделевское предположение для этого алгоритма,-высказывание Если хочешь, могу распечатать. И что ты нашел в этой идее такого особенного, Импик, друг мой?
Альберт Император едва заметно поморщился. Его всегда раздражало, когда коллеги позволяли себе называть его этим дурацким прозвищем. Однако от робота он это услышал впервые! Ему потребовалось некоторое время, чтобы вновь собраться с мыслями.
А. И.: Не нужно распечатывать. Однако истинно ли это высказывание— неопровержимо ли оно истинно?
М. И. К.: Неопровержимо истинно? Что ты имеешь в виду? А, понятно... СМИСР подтвердит истинность — неопровержимую истинность, если угодно, — высказывания, но только при допущении, что в основе конструкции роботов лежат правила, — а это допущение, как тебе известно, я нахожу все более и более сомнительным. Дело в том, что истинность «высказывания» в точности следует из следующего утверждения: «Все краткие-высказывания, которые СМИСР готов признать неопровержимо истинными, исходя из допущения, что роботы построены в соответствии с правилами, являются истинными». Так что я не знаю, истинно ли на самом деле высказывание. Это зависит от того, справедливо твое сомнительное утверждение или нет.
А. И.: Ясно. Значит, твои слова надо понимать так, что ты (вместе со СМИСРом) готов признать — без каких бы то ни было оговорок, — что истинность высказыванияследует из
допущения, что роботы построены в соответствии с правилами
М. И. К.: Разумеется.
А. И.: Тогда получается, что-высказываниедолжно
быть-утверждением.
М. И. К.: Ну коне... гм... что? Ах да, разумеется, ты прав. Однако по самому своему определению,не может само быть-утверждением, разве что, по меньшей мере, одно из-утверждений является в действительности ложным. Да ... это только подтверждает то, о чем я тебе все это время говорю; теперь я могу, наконец, совершенно определенно заявить, что правила или механизмыникакого отношения к нашей конструкции не имеют.
А. И.: Ну а я тебе говорю, что имеют, — по крайней мере, я абсолютно уверен, что ни Керратерс, ни кто-либо еще, ничего не перепутал. Я лично все проверил, причем чрезвычайно тщательно. В любом случае, проблема-то не в этом. Доказательство остается справедливым вне зависимости от того, какие именно вычислительные правила были использованы при создании робота. То есть, какой бы набор правиля тебе ни предоставил, этим самым доказательством ты исключил бы и его! Не понимаю, почему это так важно, те самые процедуры я тебе показал или нет.