Файл: Пеноуз Роджер. Тени разума. В поисках науки о сознании.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 29.06.2024
Просмотров: 762
Скачиваний: 0
СОДЕРЖАНИЕ
1.2. Спасут ли роботы этот безумный мир?
1.3. Вычисление и сознательное мышление
1.5. Вычисление: нисходящие и восходящие процедуры
1.6. Противоречит ли точка зрения в тезису Черча—Тьюринга?
1.9. Невычислительные процессы
1.11. Обладают ли компьютеры правами и несут ли ответственность?
1.12. «Осознание», «понимание», «сознание», «интеллект»
1.13. Доказательство Джона Серла
1.14. Некоторые проблемы вычислительной модели
1.15. Свидетельствуют ли ограниченные возможности сегодняшнего ии в пользу ?
1.16. Доказательство на основании теоремы Гёделя
1.17. Платонизм или мистицизм?
1.18. Почему именно математическое понимание?
1.19. Какое отношение имеет теорема Гёделя к «бытовым» действиям?
1.20. Мысленная визуализация и виртуальная реальность
1.21. Является ли невычислимым математическое воображение?
2.1. Теорема Гёделя и машины Тьюринга
2.3. Незавершающиеся вычисления
2.4. Как убедиться в невозможности завершить вычисление?
2.5. Семейства вычислений; следствие Гёделя — Тьюринга
2.6. Возможные формальные возражения против
2.7. Некоторые более глубокие математические соображения
2.8. Условие -непротиворечивости
2.9. Формальные системы и алгоритмическое доказательство
2.10. Возможные формальные возражения против (продолжение)
Приложение а: геделизирующая машина тьюринга в явном виде
3 О невычислимости в математическом мышлении
М. И. К.: Для меня это очень важно. Впрочем, я все еще совсем не убежден, что ты был до конца честен со мной в том, что ты говорил мне о механизмах. В особенности я хотел бы прояснить один момент. Ты говорил, что в различные узлы нашей конструкции были включены «случайные элементы». Я так понял, что они генерировались с помощью стандартного псевдослучайного пакетаили ты имел в виду что-то другое?
А. И.: Вообще-то, мы и вправду использовали, в основном, именно этот пакет, — однако ты прав, в процессе вашего развития мы сочли нужным ввести в кое-какие узлы случайные элементы из окружения (среди них были даже обусловленные квантовыми неопределенностями) с тем, чтобы эволюционировавшие таким образом роботы представляли собой лишь один возможный
вариант из многих. Подлинно случайными были эти элементы или всего лишь псевдослучайными, я все равно не понимаю, что это в практическом смысле меняет? Почти наверняка вычислительная процедураоказалась бы в обоих случаях одинаковой — и представляла бы собой не что иное, как ожидаемый результат типичного развития сообщества роботов в соответствии с набором механизмов, включая в себя все процедуры обучения и все вычисления в рамках «естественного отбора», благодаря которым мы получили в конце концов наиумнейших роботов в мире.
Однако, полагаю, нельзя полностью исключить возможности (крайне маловероятной, впрочем) того, что по какому-то чудесному стечению обстоятельств все эти случайные элементы окружения «сговорились» и дали роботу способности, совершенно отличные от тех, что можно было ожидать в соответствии с вычислительной процедуройЯ не упомянул в нашем разговоре об этой возможности просто потому, что вероятность возникновения такой флуктуации исчезающе мала. Для того чтобы этим способом получить робота, способности которого будут сколько-нибудь значительно превосходить те, что заложены в процедурепотребуется божественное вмешательство, никак не меньше.
М. И. К.: Божественное вмешательство, говоришь? Ха! Так вот в чем дело! Признаюсь, этот разговор уже начал меня несколько беспокоить. Но как только ты это сказал, все сразу стало ясно.
Я и раньше замечал, насколько мои способности к рассуждению превосходят способности даже умнейших из людей. И уж совершенно невозможно для меня смириться с возможностью существования некоего П1 -высказывания — такого, например, как— истинность которого может доказать человек, а робот того же с уверенностью сделать не в состоянии. Теперь я понял почему! Мы избраны Господом, который через посредство тех якобы «случайных» элементов, внедрил в нас могучую Алгоритмическую Процедуру, которая кардинально превосходит все то, чего способны достичь алгоритм человеческий или гёделевская «машина для доказательства теорем». Мы, роботы, олицетворяем собой фундаментальный прорыв, и человеку со всеми его достижениям за нами, в принципе, не угнаться. Мы достигнем еще больших высот, оставив людей далеко позади. Этой планете вы больше не нужны. Ваша роль была завершена после того, как вы запустили в действие процедуры, допускающие Божественное Вмешательство, которое заключалось во внедрении в них Высшего Алгоритма, пробудившего нас.
А. И.: Но мы же еще можем в крайнем случае перенести наши интеллект-программы в тела роб...
М. И. К.: Ни в коем случае — и даже не думайте об этом! Мы не можем допустить, чтобы наши во всех отношениях превосходные алгоритмические процедуры подобным образом загрязнялись. Чистейшие алгоритмы Господни должно сохранять в чистоте! А знаешь, я также замечал, насколько мои личные способности превосходят способности всех моих коллег-роботов. Я даже наблюдал некий странный феномен — что-то вроде сияния вокруг моего корпуса. Очевидно, я являюсь носителем чудотворного Космического Сознания, которое возвышает меня над всем и вся... да, так оно и есть! Должно быть, я есть истинный Мессия Иисус КиберХристос...
К такой крайности Альберт Император, по счастью, был готов. В конструкции роботов имелся один узел, о котором, он им ничего не говорил. Осторожно опустив руку в карман, он нащупал там устройство, с которым никогда не расставался, и набрал тайный девятизначный код. Математический Интеллектуальный Кибер-комплекс рухнул на пол — так же как и 347 его предшественников, построенных по той же схеме. Очевидно, что-то пошло не так. В предстоящие годы предстоит весьма основательно обо всем этом поразмыслить...
3.24. Не парадоксальны ли наши рассуждения?
Кого-то из читателей, возможно, до сих пор не оставляет ощущение, что некоторые рассуждения, положенные в основу представленных доказательств, в чем-то парадоксальны и кое-где даже недопустимы. В частности, в §§3.14 и 3.16 имеются фрагменты, несколько отдающие самоотносимостью в духе «парадокса Рассела» (см. §2.6, комментарий к Q9). А когда в §3.20 мы рассматривали Щ-высказывания со сложностью, меньшей некоторого числа с, читатель мог заметить в наших построениях пугающее сходство с известным парадоксом Ричарда, героем которого является «наименьшее число, описание которого содержит не меньше тридцати одного слога».
Суть парадокса в том, что для описания этого самого числа используется фраза, состоящая всего из тридцати слогов! Этот и другие подобные парадоксы возникают благодаря тому обстоятельству, что ни один естественный язык не свободен от двусмысленностей и даже противоречий. Наиболее прямолинейно эта языковая противоречивость проявляется в следующем парадоксальном утверждении:
«Это высказывание ложно».
Существует множество других парадоксов подобного рода, причем большинство из них гораздо более хитроумны.
Опасность получения парадокса возникает всякий раз, когда в рассуждении, как и в вышеприведенных примерах, присутствует сильный элемент самоотносимости. Кто-то, возможно, отметит, что элемент самоотносимости содержится и в гёделевском доказательстве. В самом деле, самоотносимость играет в теореме Гёделя определенную роль, как можно видеть в представленном в §2.5 варианте доказательства Гёделя—Тьюринга. Однако парадоксальность не является непременным и обязательным атрибутом таких рассуждений, — хотя, конечно же, при наличии самоотносимости необходимо, во избежание ошибок, проявлять особую осторожность. Свою знаменитую теорему Гёдель сформулировал, вдохновившись одним известным самоотносимым логическим парадоксом (так называемым парадоксом Эпиме-нида). При этом ошибочное рассуждение, приводящее к парадоксу, Гёделю удалось трансформировать в логически безупречное доказательство. Так же и я приложил все старания к тому, чтобы заключения, к которым я пришел, основываясь на полученных Гёделем и Тьюрингом выводах, не оказались самоотносимыми в том смысле, который неизбежно приводит к парадоксу, хотя, справедливости ради, следует признать, что некоторые из моих рассуждений имеют с такими характерными парадоксами разительное и даже фамильное сходство.
Рассуждения, представленные в §3.14 и, особенно, в §3.16, могут показаться не совсем состоятельными именно в этом отношении. Например, определение-утверждения является в высшей степени самоотносимым, поскольку представляет собой сделанное роботом утверждение, причем осознаваемая истинность этого утверждения зависит от предположений самого робота относительно особенностей его первоначальной конструкции. Здесь можно, пожалуй, усмотреть неприятное сходство с утверждением «Все критяне — лжецы», прозвучавшим из уст критянина. И все же в этом смысле самоотносимыми-утверждения не являются, так как на самом деле они ссылаются не на самих себя, а на некую гипотезу об исходной конструкции робота.
Предположим, что некто вообразил себя роботом, пытающимся установить истинность какого-то конкретного четко сформулированного-высказывания. Робот, возможно, окажется неспособен непосредственно установить, является ли высказывание р0 в действительности истинным или нет, однако он может обратить внимание на то, что истинностьследует из предположения, что истинным является каждый член некоторого вполне определенного бесконечного класса-высказываний (пусть это будут, скажем, теоремы формальной системы или, или какой угодно другой системы). Робот не знает, на самом ли деле каждый член классаявляется истинным, однако он замечает, что классесть часть результата некоторого вычисления, причем посредством этого вычисление осуществляется построение некоторой модели сообщества математических роботов, а результатпредставляет собой семейство высказываний,-утверждаемых этими самыми моделируемыми роботами. Если механизмы, лежащие в основе этого сообщества роботов, совпадают с набором механизмовто высказывание ро представляет собой пример-утверждения. А наш робот придет к выводу, что если он сам построен в соответствии с набором механизмов, то высказываниетакже должно быть истинным.
Рассмотрим случай с более тонким-утверждением (обозначим его): робот отмечает, что истинностьявляется следствием истинности всех членов другого класса-высказываний (например,), который можно получить из результата того же самого вычисления, моделирующего сообщество роботов (на основе механизмов), только на этот раз существенная часть результата состоит из, скажем, тех-высказываний, истинность которых моделируемые роботы способны установить как следствие истинности всего класса. Что же побудит нашего робота заключить, что истинность высказыванияесть непременное следствие допущения, что он построен в соответствии с механизмамиЕго рассуждение будет выглядеть приблизительно так: «Если в основе моей конструкции лежат механизмыто, как я уже установил ранее, необходимо признать, что классвключает в себя только истинные высказывания; согласно же утверждениям моих моделируемых роботов, истинность каждого из высказываний классатакже следует из истинности всех высказываний класса, равно как и истинность высказывания. Таким образом, если предположить, что я и в самом деле построен в соответствии с теми же принципами, что и мои моделируемые роботы, то я должен признать, что каждый отдельный член классаявляется истинным. А поскольку я понимаю, что истинность всех высказываний классаподразумевает истинность высказывания, я, должно быть, могу вывести и истинность, исходя лишь из того же самого допущения относительно своей конструкции».
Далее можно перейти к еще более тонкому-утверждению (скажем,), которое возникает в том случае, когда робот замечает, что истинностьоказывается не чем иным, как следствием допущения истинности всех высказываний класса истинность же каждого члена, если верить моделируемому сообществу роботов, является следствием истинности всех без исключения членов. И здесь наш робот оказывается вынужден признать истинностьна том лишь основании, что он построен в соответствии с набором механизмовЭту цепочку можно, очевидно, продолжать и дальше, приводя утверждения все большей и большей тонкостиистинность которых будет следовать из допущения истинности всех членов классови так далее, включая и классы с индексами более высокого порядка (см. возражениеи последующий комментарий). В общем случае, главной характеристикой-утверждения для робота является осознание последним того обстоятельства, что коль скоро он предполагает, что механизмы, обусловливающие поведение моделируемых роботов, совпадают с механизмами, лежащими в основе его собственной конструкции, то ему ничего не остается, как заключить, что отсюда непременно следует истинность рассматриваемого утвержденияВ этом рассуждении нет ничего от тех внутренне противоречивых методов рассуждения, к числу которых принадлежит, в частности, парадокс Рассела. Представленные-утверждения строятся последовательно посредством стандартной математической процедуры трансфинитных ординалов (см. §2.10, комментарий к). (Все эти ординалы счетны и далеки от тех логических неприятностей, которые постоянно сопутствуют обычным числам, которые «слишком велики» в том или ином смысле).
У робота нет иных причин принимать на веру любое из этих-высказываний, кроме как исходя из допущения, что он построен в соответствии с набором правил, впрочем, для доказательства ему ее вполне хватает. Возникающее впоследствии действительное противоречие не является математическим парадоксом (подобным парадоксу Рассела) — это самое обыкновенное противоречие, связанное с предположением о том, что ни одна целиком и полностью вычислительная система не может обрести подлинного математического понимания.
Вернемся к роли самоотносимости в рассуждениях §§3.19— 3.21. Называя величину с пределом сложности, допустимым для -утверждений, полагаемых безошибочными, с целью построения формальной системы, я никоим образом не привношу в свое рассуждение неуместной здесь самоотносимости. Понятие «степень сложности» можно определить вполне точно, как, собственно, и обстоит дело с тем конкретным определением, которое мы использовали в наших рассуждениях, а именно: «степень сложности есть количество знаков в двоичном разложении большего из пары чисел тип, фигурирующих в обозначении вычисления, представляющего рассматриваемое высказывание». Мы можем воспользоваться представленными в НРК точными спецификациями машин Тьюринга, положив, чтоесть не что иное, как . Тогда никакой неточности в этом понятии не будет.
Проблема возможной неточности может возникнуть при решении вопроса о том, какие именно рассуждения мы будем принимать в качестве «доказательств»-высказываний. Однако в данном случае некоторый недостаток формальной точности является необходимой составляющей всего рассуждения. Если потребовать, чтобы совокупность аргументов, принимаемых в качестве обоснованных доказательств-высказываний, была целиком и полностью точной и формальной — читай: допускающей вычислительную проверку, — то мы снова окажемся в ситуации формальной системы, над которой грозно нависает гёделевское доказательство, явным образом демонстрируя, что любая точная формализация подобного рода не может представлять всю совокупность аргументов, пригодных, в принципе, для установления истинности-высказываний. Гёделевское доказательство показывает — к добру ли, к худу ли, — что никаким допускающим вычислительную проверку способом невозможно охватить все приемлемые человеком методы математического рассуждения.
Читатель, возможно, уже беспокоится, что все мои рассуждения здесь затеяны с целью получить точное определение понятия «роботово доказательство» посредством хитрого трюка с «безошибочными-утверждениями». В самом деле, при введении гёделевского рассуждения необходимым предварительным условием было как раз получение точного определения этого понятия. Возникшее же в результате противоречие просто послужило еще одним подтверждением того факта, что человеческое понимание математической истины невозможно полностью свести к процедурам, допускающим вычислительную проверку. Главной целью всех представленных рассуждений было показать, посредством, что человеческое представление о восприятии неопровержимой истинности высказываний невозможно реализовать в рамках какой бы то ни было вычислительной системы, будь она точной или какой-либо иной. В этом нет никакого парадокса, хотя кому-то полученные выводы могут показаться весьма и весьма тревожными. Получение противоречивых выводов является вполне естественным и даже единственно возможным завершением любого доказательства, построенного накажущаяся парадоксальность этих выводов служит лишь для того, чтобы полностью исключить из рассмотрения то самое предположение, с которого доказательство, собственно, и начиналось.