ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 22.08.2024
Просмотров: 385
Скачиваний: 0
сопротивление такого материала 850 — 950 МПа. При укладке такого же наполнителя в соотношении 1:1, т.е. направления волокон в соседних слоях перекрещиваются под углом 90°, прочность уменьшается вдвое. При любом способе укладки волокна или ткани материалы анизотропны и степень анизотропии составляет 2-10.
Гетинаксы в зависимости от свойств составляющих применяются как электроизоляционные или строительно-декоративные материалы для облицовки производственных помещений, салонов самолетов и т.п. Текстолит используют для разнообразных средненагруженных трущихся деталей, включая зубчатые колеса и кулачки. Среди достоинств текстолита — сопротивление износу, отсутствие схватывания со стальными деталями.
Стеклотекстолиты сочетают малую плотность (1,6 - 1,9 г/см3) с высокой прочностью и жесткостью. Наивысшую прочность обеспечивает эпоксидная связка, а минимальную — кремнийорганические полимеры. Стеклотекстолиты по способности поглощать вибрации превосходят стали, сплавы титана и сплавы алюминия и поэтому имеют хорошую выносливость при переменных нагрузках. По тепловому расширению эти материалы близки к сталям.
При нагреве полимерная связка разупрочняется быстрее волокна, поэтому предел прочности при сжатии или сдвиге снижается быстрее, чем временное сопротивление.
Слоистые пластики со стеклянным или полимерным волокном в течение десятков секунд выдерживают температуру свыше 3000° С. В поверхностных слоях разрушается полимер, оплавляется наполнитель и образуется тугоплавкий кокс, который защищает более глубокие слои материала. Эта особенность лежит в основе применения пластмасс в качестве теплозащитных материалов.
Термореактивные полимеры используют при изготовлении оболочковых форм для отливок, различной технологической оснастки, абразивного инструмента.
РЕЗИНЫ
Резинами называются эластичные многокомпонентные материалы на основе каучука. Эластичность резин, т.е. способность к очень большим (500 - 800 %) обратимым деформациям, является наиболее ценным их свойством. Резины имеют очень низкий модуль упругости (Е = 1... 10 МПа) и легко деформируются под действием относительно небольших напряжений; их коэффициент Пуассона близок к 0,5.
Механические свойства резин определяют при испытаниях на растяжение. Для резин характерно σв = 10 ... 60 МПа и очень большое относительное удлинение в момент разрыва образцов — до 900 - 1000 % Трещины в резинах распространяются медленно; сопротивление раздиру (ГОСТ 262-93) изменяется от 20 до 150 кН/м.
Таблица 13.10. Механические свойства резин
Упрочнение резин при растяжении обусловлено выпрямлением молекул каучука, ограничением возможности дальнейшей высокоэластичной деформации, а также их кристаллизацией. Кристаллизация в резинах нежелательна, так как из-за нее уменьшается эластичность. После снятия нагрузки кристаллы «плавятся», и эластичность восстанавливается через некоторое время. Наиболее склонны к кристаллизации резины на основе натурального каучука, близкого к нему изопренового, а также хлоропренового каучуков. После разрыва образца имели остаточное относительное удлинение 20 - 30 %, т.е. менее 5 % максимального удлинения перед разрывом. Это остаточное удлинение в основном является необратимой деформацией из-за разрывов поперечных связей и проскальзывания макромолекул, чем меньше остаточное удлинение, тем выше качество резины.
Резиновые изделия при эксплуатации испытывают напряжения, которые значительно меньше временного сопротивления. Под нагрузкой часть подводимой к изделию механической энергии тратится на преодоление межмолекулярного взаимодействия и преобразуется в тепловую. Гистерезисные потери возникают при однократном цикле нагружения.
Особое значение они приобретают при многократном циклическом нагружении (рис. 13.17). В массивных изделиях, когда теплоотвод от внутренних участков затруднен из-за невысокой теплопроводности резины, ее температура повышается на 100 ° С и более. Гистерезисный разогрев резины сопровождается снижением ее прочности и усилением окислительного старения. Как следствие, сокращается срок эксплуатации изделий, а в некоторых случаях возможно и их разрушение. Гистерезисные потери обеспечили использование резины в качестве основного материала для амортизаторов. Энергия вибраций, сотрясений или ударов поглощается при деформировании резиновых элементов амортизационных устройств.
Резины изготавливают на основе натуральных и синтетических каучуков с температурами стеклования ниже 0° С. Основной операцией превращения каучука в резину является вулканизация, когда линейные молекулы термопластичного каучука соединяются поперечными химическими связями. Молекулярная структура резины представляет собой объемную сетку, способную к высокоэластичным деформациям благодаря невысокой плотности поперечных связей. По сравнению с каучуком резина прочнее, не склонна к необратимым деформациям под нагрузкой и не растворяется, а лишь набухает в тех растворителях, в которых растворим каучук.
У резин общего назначения интервал рабочих температур составляет - 50 ... + 150 ° С. При нагреве выше 150° С резина быстро разрушается, а при охлаждении ниже — 50 ° С теряет эластичность. Для более низких и более высоких температур разработаны специальные резины — морозостойкие и теплостойкие соответственно.
Особенностью строения большинства каучуков являются двойные:
связи между атомами углерода в главной цепи молекул — В зависимости от расположения ближайших групп атомов по
отношению к двойным связям возможны различные конфигурации молекул каучука (рис. 13.18).
При одинаковом химическом составе изомеры каучука различаются гибкостью, т.е. по числу возможных конформаций одни изомеры значительно превосходят другие. Например, натуральный каучук (1,4-цис) отличается от гуттаперчи (1,4-транс) повышенной эластичностью.
Сохранение основного множества двойных связей в объемной молекулярной сетке резины является причиной ее быстрого старения. Особенно разрушительно действует озон, старение ускоряется при нагреве и при одновременном действии окислителей и механических напряжений. В ре-
зультате старения резина с поверхности покрывается сеткой трещин. В частности, при знакопеременном цикле нагружения резина одновременно подвергается окислению и механическому разрушению. Разрывы связей в молекулах каучука и рекомбинация осколков молекул уменьшают эластичность резины и сопровождаются постоянным растрескиванием ее поверхностных слоев.
В зависимости от сопротивления старению резины подразделяют на три группы: стойкие (не содержащие двойных связей); умеренно-стойкие и нестойкие.
Стойкими являются резины на основе этиленпропиленовых, кремнийорганических и фторкаучуков, а также хорсульфированного полиэтилена. Они нечувствительны к озону ни при его равновесной концентрации в воздухе, равной (2 — 4) • 10 _6 %, ни при увеличении этой концентрации до 0,1 - 1,0 %. Эффект старения становится заметным у них лишь через годы.
К умеренностойким относятся резины на основе хлоропренового и бутилового каучуков и тиоколов. В этих материалах трещины начинают развиваться после нескольких месяцев выдержки.
Нестойкими являются резины общего назначения, которые производят в массовом количестве. Это натуральная резина и резины на основе изопреновых, бутадиен-стирольных, бутадиен-нитрильных и ряда других каучуков. Трещины возникают у них после непродолжительного растяжения, изгиба или кручения. Повышение концентрации озона в воздухе до 10~2 - Ю-4 % влечет растрескивание поверхности этих материалов при 20—25 0С уже через 1 ч выдержки. Поверхностные трещины способствуют в дальнейшем разрушению и понижают износостойкость резин.
Резины в силу податливости при механическом воздействии устойчивы против многих видов абразивного изнашивания. В то же время они изнашиваются «скатыванием». При трении микронеровности резины
деформируются, сворачиваются в скатку и отрываются от поверхности. Скорость изнашивания резин резко увеличивается при нагреве выше 150 ° С. Изнашивание развивается под действием касательных напряжений, надрывающих поверхностный слой и тем интенсивнее, чем больше коэффициент трения. Микротрещины, возникшие из-за старения, увеличивают износ.
Как полимерный материал резина характеризуется газо- и водонепроницаемостью, химической стойкостью (за исключением сильных окислителей). Резины незначительно поглощают воду (натуральная резина
—до 2 % НгО). Исключительно важное значение имеет стойкость резин к маслу и моторному топливу. Резины общего назначения, включая натуральную резину, нестойки к этим веществам, набухают в них и быстро теряют прочность. Специальные резины — бутадиен-нитрильные, полиуретановые, полисульфидные, хлоропреновые, а также резины на основе фторкаучуков являются маслостойкими. Резина на основе бутилового каучука превосходит прочие по газонепроницаемости, ее основное применение
—камеры автомобильных шин.
В рабочем интервале температур механические свойства резин изменяются: эластичность резин уменьшается при приближении к tCT и при температурах выше 100 ° С из-за термического разрушения и старения. При кратковременном нагреве до 120 ° С (чтобы исключить старение) прочность всех без исключения резин уменьшается вдвое. Теплостойкими являются резины на основе этиленпропиленовых, кремнийорганических и фторкаучуков (до 300-400 ° С вместо 150 ° С для обычных резин). Резина является диэлектриком.
Свойства резины изменяются в зависимости от выбора компонентов, соотношения между ними и условии вулканизации. В состав резины входят: каучук, 8 - 30 % пластификатора для подготовки сырой резины к формованию, наполнитель в виде тонкодисперсного порошка, вулканизатор для соединения молекул каучука поперечными связями, антиоксидант для замедления старения, ускоритель вулканизации, краситель и другие составляющие.
Наполнители подразделяют на активные (сажа, оксид кремния) и инертные (мел, тальк и др.). Активные наполнители в виде специально подготовленного высокодисперсного порошка взаимодействуют с молекулами каучука и повышают прочность резины. Инертные наполнители удешевляют резину, не повышая ее прочности. В сырую резину вводят регенерат (8 -30%) — мелкоизмельченные отходы и старые резиновые изделия, что тоже ее удешевляет. Чем больше содержание активного наполнителя и вулканизатора, тем выше прочность, модуль упругости и потери на гистерезис. Чем больше содержание пластификатора, тем слабее межмолекулярное взаимодействие, ниже прочность и меньше потери на гистерезис.
Технология изготовления резиновых изделий включает пластикацию каучука вместе с пластификаторами, смешивание компонентов и получение
сырой резины, формирование, сборку и вулканизацию изделий. Пластикация представляет собой многократное деформирование сырой резины. В результате пластикации смесь нагревается, средняя молекулярная масса уменьшается вдвое из-за механической деструкции и получается податливый вязкий материал, который легко смешать с другими составляющими, а затем из сырой резины сформировать изделие. Вулканизацию проводят при 140 — 180 ° С в пресс-формах или автоклавах. Выдержку делают максимально короткой для уменьшения термического разрушения резины (с этой целью применяют ускорители вулканизации). Вулканизатором обычно является сера, ее добавляют в количестве 5 - 6 %, сохраняя эластичность резины. При концентрации серы 30 - 50 % частота поперечных связей так велика, что эластичность полностью исключается; полученный после вулканизации твердый материал называют эбонитом.
Каучуки, не имеющие двойных связей в своих молекулах, вулканизуются органическими пероксидами, а полисульфидные каучуки — оксидами цинка и магния. Вулканизация может осуществляться и без нагрева при 20 - 25° С.
Каучуки легко совмещаются с другими веществами — стиролом, акрилонитрилом, изобутиленом. В резинах общего назначения эластичный компонент обычно является сополимером, например бутадиенстирольный каучук. При увеличении содержания стирольных или нитрольных звеньев в молекулах каучука понижается морозостойкость резины. В изделиях из резины часто используют армирующие элементы из волокон и тканей для увеличения прочности.
Номенклатура резиновых изделий исключительно широка. Для машиностроения главное значение имеют шины для средств транспорта, амортизаторы, приводные ремни, рукава, различные прокладки и манжеты, подшипники скольжения. Резину используют как материал штампов для листовой штамповки. Для производства резиновых изделий применяют резины общего назначения и специальные. К первым относят натуральную резину и практически одинаковую с ней по свойствам изопрено-вую резину, бутадиен-стирольные резины, превосходящие по сопротивлению изнашивания натуральную резину. К специальным резинам относятся:
морозостойкие резины, сохраняющие эластичность до —70 .. . — 100 ° С; это кремнийорганические резины и резины со специальными пластифика-
торами, например бутадиен-нитрильные, пластифицированные себацинатами;
теплостойкие резины — этиленпропиленовые (до 200 - 300 ° С), фторкаучуковые (до 300° С), кремнийорганические (до 250° С);
маслостойкие резины на основе хлоропреновых, бутадиен-нитриль- ных, фторкаучуков, а также полисульфидных (тиоколов) и полиуретано-вых каучуков;
радиационно стойкие резины, наполненные соединениями свинца или бария для поглощения 7-излучения.
Исключительная ценность уникальных свойств резины сделала необходимой комплексную проверку ее свойств по стандартным способам.