Файл: ГДЗ. Физика 9кл_Перышкин_Гутник_2001.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 24.08.2024

Просмотров: 106

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Imaujvdh\Zy dZf_jZ h[eZ^Z_l [hevrbf [ukljh^_ckl\b_f \ hlebqb5. _ hl dZf_ju <bevkhgZ Imaujvdh\Zy dZf_jZ hlebqZ_lky hl dZf_ju <bevkhgZ l_f qlh \ g_c \f_klh i_j_kus_ggh]h iZjZ ijbf_gy_lky i_j_]j_lZy \ur_ lhqdb dbi_gby `b^dhklv

 

§59.

 

1.

Hiul aZdexqZ_lky \ bkke_^h\Zgbb \aZbfh^_ckl\by α qZklbp k

y^jZfb Zlhfh\ ZahlZ E_lysZy k [hevrhc kdhjhklvx α qZklbpZ ijb

ihiZ^Zgbb \ y^jh ZlhfZ ZahlZ

\u[b\ZeZ ba g_]h

y^jh ZlhfZ

\h^hjh^Z dhlhjh_ J_a_jnhj^ gZa\Ze ijhlhghf

 

2.

H lhf qlh \ j_amevlZl_ \aZbfh^_ckl\by α qZklbp k y^jZfb Zlhfh\

ZahlZ h[jZah\Zebkv y^jZ dbkehjh^Z b \h^hjh^Z

 

3.

Y^jh ZlhfZ \h^hjh^Z 1

bgZq_ gZau\Z_lky

ijhlhghf b

 

1

 

 

h[hagZqZ_lky kbf\hehf 11 p beb p.

 

 

4.

Ij_^iheh`_gb_ h lhf qlh ijhlhgu \oh^yl \ khklZ\ y^jZ ex[h]h

ZlhfZ

 

 

 

§60.

1.

Y^jZ Zlhfh\ bf_xl [hevrmx fZkkm q_f kmfZ fZkk khklZ\eyxsbo

bo ijhlhgh\ Wlh [ueh mklZgh\e_gh hiulguf iml_f b ^Z_l iheZ]Zlv

qlh ihfbfh ijhlhgh\ \ khklZ\ y^jZ \oh^yl dZdb_ lh ^jm]b_ qZklbpu

2.

Wlh ij_^iheh`_gb_ [ueh \ukdZaZgh Wjg_klhf J_a_jnhj^hf \ ]

3.

>`_cfk Q_^\bd \ ]

4.

M g_cljhgh\ hlkmlkl\m_l aZjy^ ihkdhevdm hg g_ hldehgy_lky

we_dljbq_kdbf b fZ]gblguf ihe_f FZkkm hij_^_ebeb ba

dhebq_kl\_gguo oZjZdl_jbklbd \aZbfh^_ckl\by g_cljhgZ k ^jm]bfb

qZklbpZfb

5.

G_cljhg h[hagZqZ_lky kbf\hehf 01n beb n _]h fZkkZ ihqlb jZ\gZ

g_fgh]h [hevr_ fZkk_ ijhlhgZ

 

 

§61.

 

 

 

1.

Gmdehgu

 

 

 

 

2.

FZkkh\uf qbkehf gZau\Z_lky qbkeh gmdehgh\ \

 

y^j_ ZlhfZ

FZkkh\h_ qbkeh h[hagZqZ_lky [md\hc :.

 

 

 

3.

FZkkh\h_ qbkeh jZ\gh k lhqghklvx ^h p_euo qbkem Zlhfguo

^bgbp fZkku kh^_j`Zsboky \ fZkk_ ZlhfZ

 

 

 

4.

Qbkeh ijhlhgh\ \ Zlhf_ h[hagZqZ_lky

[md\hc Z

b

gZau\Z_lky

aZjy^h\uf qbkehf

 

 

 

 

5.

I_j_^ kbf\hehf kgbam

 

 

 

 

32


AZjy^h\h_ qbkeh jZ\gh aZjy^m y^jZ \ujZ`_gghfm \ we_f_glZjguo we6. _dljbq_kdbo aZjy^Zo AZjy^h\h_ qbkeh ZlhfZ jZ\gh _]h ihjy^dh\hfm ghf_jm \ lZ[ebp_ F_g^_e__\Z

A a^_kv O ²kbf\he obfbq_kdh]h we_f_glZ 7. QbkehZ X g_cljhgh\ \ y^j_ h[hagZqZxl [md\hc

8. N.

9. A = Z + N.

 

 

§62.

 

 

1.

Bahlhiu ² we_f_glu k h^bgZdh\ufb

aZjy^Zfb y^_j

gh

jZaebqgufb fZkkZfb

 

 

2.

Y^jZ bahlhih\ h^gh]h we_f_glZ bf_xl h^bgZdh\uc aZjy^

 

3.

JZagu_ bahlhiu h^gh]h we_f_glZ kh^_j`Zl jZagh_ dhebq_kl\h

g_cljhgh\

 

 

 

4.

M \h^hjh^Z _klv ljb bahlhiZ ijhlbc 1

^_cl_jbc 2

),

 

 

1

1

 

ljblbc 3

).

 

 

 

1

 

 

 

5.

Ihlhfm qlh fZkkZ Zlhfh\ \uqbkey_lky dZd kj_^g__ agZq_gb_ fZkk

\k_o _]h bahlhih\

 

 

 

 

 

 

 

§63.

 

 

 

1.

FZkkZ ZlhfZ mf_gvrZ_lky gZ Z aZjy^ _]h y^jZ²gZ

2.

GZijbf_j 22688 Rd 22286 Rn +24 He .

 

 

 

3.

Y^jh jZ^hgZ kh^_j`bl gZ ijhlhgZ f_gvr_ q_f y^jh jZ^by

4.

Ijb

α jZkiZ^_ h[jZam_lky gh\uc

obfbq_kdbc we_f_gl

ihjy^dh\uc ghf_j

dhlhjh]h

\

lZ[ebp_

 

F_g^_e__\Z f_gvr_

bkoh^gh]h gZ

 

 

 

 

 

 

5.

Ijb

β jZkiZ^_ baemqZ_lky we_dljhg b

 

Zglbg_cljbgh H^bg

g_cljhg \ y^j_ ijb lZdhf jZkiZ^_ ij_\jZsZ_lky \ ijhlhg we_dljhg

b Zglbg_cljbgh

 

 

 

 

 

 

6.

Ijb

β jZkiZ^_ h[jZam_lky gh\uc obfbq_kdbc we_f_gl

ihjy^dh\uc ghf_j

dhlhjh]h

\

lZ[ebp_

F_g^_e__\Z [hevr_

bkoh^gh]h gZ

 

 

 

 

 

 

7.

G_l ihlhfm qlh fZkkh\h_ qbkeh jZ\gh qbkem gmdehgh\ Z wlh

qbkeh ijb β jZkiZ^_ g_ f_gy_lky

 

 

 

8.

>ey α jZkiZ^Z A X

A4 Y+4 He .

 

 

 

 

 

Z

Z 2

2

0~ .

 

 

 

>ey β jZkiZ^Z A X

AY+

0e+

 

 

 

 

 

Z

+1

1

0

 

 

 

9.

α b β jZkiZ^ qZklh khijh\h`^Z lky γ baemq_gb_f

33


§64.

<hagbdZe \hijhk h lhf ihq_fm y^jZ g_ jZkiZ^Zxlky gZ hl^_evgu_ gmdehgu1. ih^ ^_ckl\b_f we_dljhklZlbq_kdbo kbe hllZedb\Zgby f_`^m iheh`bl_evgh aZjy`_ggufb gmdehgZfb Bkoh^y ba wlh]h mq_gu_ ijbreb d aZdexq_gbx qlh f_`^m gmdehgZfb y^jZ ^_ckl\mxl kbeu ijbly`_gby ^jm]hc ijbjh^u

Kbeu ijbly`_gby f_`^m gmdehgZfb \ y^j_ gZau\Zxlky y^_jgufb Bo2. hkh[_gghklv khklhbl \ lhf qlh bo ^_ckl\b_ agZqbl_evgh ijhy\ey_lky gZ jZkklhygbyo kjZ\gbfuo k jZaf_jZfb y^jZ ihjy^dZ 10-15 f M`_ gZ jZkklhygbb ihjy^dZ -14 bo ^_ckl\b_ gbqlh`gh fZeh

 

§65.

1.

Wg_j]b_c k\yab y^jZ gZau\Z_lky fbgbfZevgZy wg_j]by dhlhjmx

g_h[oh^bfh aZljZlblv gZ jZks_ie_gb_ y^jZ gZ hl^_evgu_ gmdehgu

2.

m = (Zmp + Nmn) – My ]^_ m ² ^_n_dl fZkk Z b N ² qbkeh

ijhlhgh\ b g_cljhgh\ \ y^j_ khhl\_lkl\_ggh mn b mp ² fZkku

ihdhy g_cljhgZ b ijhlhgZ khhl\_lkl\_ggh M ²fZkkZ y^jZ

3.

E0 = mc2 ]^_ E0 ²wg_j]by k\yab y^jZ m ²^_n_dl fZkk k

²kdhjhklv k\_lZ \ \Zdmmf_

§66.

>_e_gb_ y^_j mjZgZ ijb [hf[Zj^bjh\d_ bo g_cljhgZfb [ueh hldjulh1. \ ] Hllh =Zghf b Njbp_f RljZkkfZghf

Ijb ih]ehs_gbb y^jhf g_cljhgZ hgh ^_nhjfbjm_lky b ijbh[j2. _lZ_l \ulygmlmx nhjfm L d y^_jgu_ kbeu ² dhjhldh^_ckl\mxsb_ lh gZ gmdehgu \ \ulygmlhf y^j_ bo ^_ckl\b_ hkeZ[_\Z_l b gmdehgu jZae_lZxlky ih^ ^_ckl\b_f we_dljhklZlbq_kdbo kbe LZdbf h[jZahf ^_e_gb_ y^jZ fh`_l gZqZlvky lhevdh lh]^Z dh]^Z hgh ^_nhjfbjm_lky ih^ ^_ckl\b_f ih]ehs_ggh]h nhlhgZ

< j_amevlZl_ ^_e_gby y^jZ h[jZamxlky ^\Z hkdhedZ jZgg__ khklZ\eyxsb3. _ y^jh b g_cljhgZ

QZklv \gmlj_gg_c wg_j]bb y^jZ ijb _]h ^_e_gbb i_j_oh^bl \ dbg4. _lbq_kdmx wg_j]bx h[jZah\Z\rboky hkdhedh\ b g_cljhgh\

Dbg_lbq_kdZy wg_j]by hkdhedh\ ijb bo lhjfh`_gbb ij5. _h[jZam_lky \h \gmlj_ggxx wg_j]bx hdjm`Zxs_c kj_^u

J_Zdpby ^_e_gb_ y^_j mjZgZ b^_l k \u^_e_gb_f wg_j]bb \ hdjm`Zxsmx6. kj_^m

34

§67.

JZkkfhljbf f_oZgbaf ijhl_dZgby p_ighc j_Zdpbb ^_e_gby y^jZ gZ1. ijbf_j_ bahlhiZ mjZgZ 235 jbk mq_[gbdZ Ijb ^_e_gbb y^jZ ZlhfZ mjZgZ \ j_amevlZl92 U_ aZo\ZlZ g_cljhgZ h[jZamxlky ljb g_cljhgZ >\Z ba gbo \ua\Zeb j_Zdpbx ^_e_gby _s_ ^\mo y^_j mjZgZ ijb wlhf h[jZah\Zehkv q_luj_ g_cljhgZ <gh\v h[jZah\Z\rb_ g_cljhgu \ua\Zeb ^_e_gb_ q_luj_o y^_j mjZgZ ijb wlhf h[jZah\Zehkv ^_\ylv g_cljhgh\ b l ^ LZdbf h[jZahf qbkeh g_cljhgh\ \ dmkd_ mjZgZ eZ\bghh[jZagh jZkl_l k l_q_gb_f \j_f_gb Z ke_^h\Zl_evgh j_adh \hajZklZ_l qbkeh ^_e_gbc y^_j mjZgZ b wg_j]by \u^_eyxsZyky \ _^bgbpm \j_f_gb

Djblbq_kdhc fZkkhc mjZgZ gZau\Z_lky gZbf_gvrZy fZkkZ ijb dhlhjhc2. g_cljhgh\ ihy\b\rboky ijb ^_e_gbb y^_j jZ\gh qbkem ihl_jygguo g_cljhgh\ aZo\Zq_gguo y^jZfb [_a ^_e_gby b \ue_l_\rbo aZ ij_^_eu dmkdZ mjZgZ

?keb fZkkZ mjZgZ f_gvr_ djblbq_kdhc lh j_Zdpby ^_e_gby g_ ijhl3. _dZ_l ba aZ g_^hklZldZ g_cljhgh\

?keb fZkkZ mjZgZ [hevr_ djblbq_kdhc lh p_igZy j_Zdpby ijb\h^bl4. d \aju\m ba aZ j_adh]h m\_ebq_gby qbkeZ k\h[h^guo g_cljhgh\

FZkkZ mjZgZ gZebqb_ hljZ`Zxs_c h[hehqdb gZebqb_ ijbf_k_c aZf5. _^ebl_ev g_cljhgh\

Y^_jguc j_Zdlhj ² wlh mkljhckl\h§68. kihkh[gh_ hkms_kl\eylv mijZ\ey1. _fmx y^_jgmx j_Zdpbx

MijZ\e_gb_ y^_jghc j_Zdpb_c aZdexqZ_lky \ j_]mebjh\Zgbb kdhjhklb2. h[jZah\Zgby g_cljhgh\ lZdbf h[jZahf qlh[u bo qbkeh hklZ\Zehkv g_baf_gguf

Hkgh\gu_ qZklb j_ZdlhjZ ^_eys__ky \_s_kl\h y^_jgh_ lhieb\h aZsblgZy3. h[hehqdZ Zdlb\gZy ahgZ hljZ`Zl_ev j_]mebjmxsb_ kl_j`gb l_iehh[f_ggbd

< Zdlb\ghc ahg_ j_ZdlhjZ gZoh^ylky mjZgh\u_ kl_j`gb y\eyxsb4. _ky y^_jguf lhieb\hf j_]mebjmxsb_ kl_j`gb ih]ehsZxsb_ g_cljhgu \h^Z kem`ZsZy aZf_^ebl_e_f g_cljhgh\ b l_iehghkbl_e_f

>ey lh]h qlh[u \ h^ghf kl_j`g_ p_ighc j_Zdpbb g_ ijhbkoh^beh5. Wlh ^_eZ_lky jZ^b [_ahiZkghklb

J_]mebjmxsb_ kl_j`gb gZoh^ykv iheghklvx \ Zdlb\ghc ahg_ ih]ehsZxl6. g_cljhgu b p_igZy j_Zdpby b^lb g_ fh`_l >ey aZimkdZ

35


j_Zdpbb j_]mebjmxsb_ kl_j`gb \u\h^yl ba Zdlb\ghc ahgu ^h l_o ihj ihdZ g_ gZqg_lky p_igZy j_Zdpby

<lhjZy nmgdpby \h^u ihfbfh aZf_^e_gby g_cljhgh\ ² l7. iehghkbl_ev hl\h^ysbc l_ieh

<h \lhjhf dhglmj_ iZj h[jZah\Z\rbc \ af__\bd_ \jZsZ_l lmj[bgm8. dhlhjZy ijb\h^bl d \jZs_gbx jhlhjZ ]_g_jZlhjZ we_dljbq_kdh]h lhdZ AZl_f hljZ[hlZgguc iZj ihklmiZ_l \ dhg^_gkZlhj ]^_ ij_\jZsZ_lky \ \h^m AZl_f pbde ih\lhjy_lky LZdbf h[jZahf g_ij_ju\gh \ujZ[Zlu\Z_lky we_dljbq_kdbc lhd

Ijb ihemq_gbb we_dljbq_kdh]h lhdZ gZ Zlhfguo we_dljhklZgpbyo ijhbkoh^yl9. ke_^mxsb_ ij_h[jZah\Zgby wg_j]bb <gmlj_ggyy wg_j]by Zlhfguo y^_j mjZgZ ijb ^_e_gbb qZklbqgh i_j_oh^bl \ dbg_lbq_kdmx wg_j]bx g_cljhgh\ b hkdhedh\ G_cljhgu b hkdhedb jZae_lZykv k [hevrhc kdhjhklvx ihiZ^Zxl \ \h^m Ijb wlhf bo dbg_lbq_kdZy wg_j]by qZklbqgh i_j_oh^bl \h \gmlj_ggxx wg_j]bx \h^u Ijb wlhf \h^Z gZ]j_\Z_lky b ijhoh^y q_j_a l_iehh[f_ggbd i_j_^Z_l wg_j]bx \h^_ gZoh^ys_cky \ af__\bd_ ij_\jZsZy __ \ iZj l _ \gmlj_ggyy wg_j]by \h^u i_j_oh^bl \h \gmlj_ggxx wg_j]bx iZjZ Z aZl_f \ _]h dbg_lbq_kdmx AZl_f iZj \jZsZ_l lmj[bgm dhlhjZy ijb\h^bl d \jZs_gbx jhlhjZ ]_g_jZlhjZ we_dljbq_kdh]h lhdZ l _ dbg_lbq_kdZy wg_j]by iZjZ i_j_oh^bl \ dbg_lbq_kdmx wg_j]bx jhlhjZ lmj[bgu b jhlhjZ ]_g_jZlhjZ dhlhjZy \ k\hx hq_j_^v i_j_oh^bl \ we_dljbq_kdmx

§69.

< k\yab k [hevrbf jhklhf ihlj_[e_gby we_dljhwg_j]bb

1. <h i_j\uo :WK lj_[m_lky gZfgh]h f_gvr__ dhebq_kl\h lhieb\Z q2. f LWK <h \lhjuo :WK \ f_gvr_c kl_i_gb aZ]jyagyxl hdjm`Zxsmx kj_^m ijb ijZ\bevghc wdkiemZlZpbb q_f LWK

:lhfgZy wg_j]_lbdZ lj_[m_l j_r_gby ke_^mxsbo lj_o hkgh\guo ijh[e3. _f kh\_jr_gkl\h\Zgb_ l_ogheh]bc k p_evx mf_gvr_gby h[jZah\Zgby hloh^h\ i_j_jZ[hldZ hloh^h\ b mf_gvr_gb_ hiZkghklb hl jZkijhkljZg_gby \ hdjm`Zxs_c kj_^_ gZ^_`gZy baheypby hloh^h\ hl hdjm`Zxs_c kj_^u

4. Hl\_j`^_gb_ `b^dbo hloh^h\ hkl_deh\Zgb_ hloh^h\

< lhf qlh \ha^_ckl\b_ §70. b emq_c gZ `b\mx ldZgv1ijhbkoh^bl. __ bhgbaZpby gZjmrZα- β _l `bagγ _^_yl_evghklv de_lhd ^Zgghc ldZgb qlh hljbpZl_evgh kdZau\Z_lky gZ a^hjh\v_ `b\h]h hj]ZgbafZ

36

2.

Ih]ehs_gghc ^hahc

baemq_gby

gZau\Z_lky ih]ehs_ggZy

\

s_kl\hf wg_j]by bhgbabjmxs_]h baemq_gby jZkkqblZggZy gZ

_^bgbpm fZkku Ih]ehs_ggZy ^haZ baemq_gby D hij_^_ey_lky ih

nhjfme_ D =

E

]^_ ? ² ih]ehs_ggZy \_s_kl\hf wg_j]by m

 

fZkkZ \_s_kl\Z ?^bgbp_c baf_j_gby ih]ehs_gghc ^hau baemq_gby

 

 

m

 

 

 

 

 

 

 

1

.

 

\ kbkl_f_ KB y\ey_lky ]j_c =j =j

 

 

3.

Ijb [hevr_c ^ha_ baemq_gby

1

 

 

 

 

 

 

 

 

 

4.

JZagu_ \b^u bhgbabjmxsbo baemq_gbc ijb h^bgZdh\hc

ih]ehs_gghc ^ha_ h[emq_gby hdZau\Zxl jZaebqgu_ ih \_ebqbg_

[bheh]bq_kdb_ wnn_dlu \

`b\hf hj]Zgbaf_ GZijbf_j

ijb

h^bgZdh\hc ih]ehs_gghc ^ha_ [bheh]bq_kdbc wnn_dl hl

α-

baemq_gby ijbf_jgh \ jZa [hevr_ q_f hl γ baemq_gby

 

5.

Dhwnnbpb_gl dZq_kl\Z baemq_gby ihdZau\Z_l \h kdhevdh jZa

[hevr_ jZ^bZpbhggZy hiZkghklv hl \ha^_ckl\by gZ `b\hc hj]Zgbaf

^Zggh]h \b^Z baemq_gby

ih kjZ\g_gbx k

γ baemq_gb_f

ijb

h^bgZdh\uo ih]ehs_gguo ^haZo Dhwnnbpb_gl dZq_kl\Z baemq_gby

^ey α baemq_gby jZ\_g ^ey β- γ b j_gl]_gh\kdh]h baemq_gby²

6.

Wd\b\Ze_glgZy ^haZ baemq_gby [ueZ \\_^_gZ \ k\yab k l_f qlh

1.

 

 

 

 

 

 

 

 

ijb h^bgZdh\hc ih]ehs_gghc ^ha_ baemq_gby jZaebqgu_ \b^u

baemq_gbc \uau\Zxl jZaebqgu_ [bheh]bq_kdb_ wnn_dlu

Wd\b\Ze_glgZy ^haZ baemq_gby H \uqbkey_lky

dZd ijhba\_^_gb_

ih]ehs_gghc ^hau D

gZ dhwnnbpb_gl dZq_kl\Z D: H = DK ?_

_^bgbp_c baf_j_gby y\ey_lky ab\_jl A\

 

7.

Qm\kl\bl_evghklv

jZaebqguo ldZg_c `b\h]h hj]ZgbafZ

hij_^_ey_lky dhwnnbpb_glhf jZ^bZpbhggh]h jbkdZ \j_fy

h[emq_gby

 

 

8.

Hl \ha^_ckl\by gZ

`b\hc hj]Zgbaf jZ^bhZdlb\guo baemq_gbc

ijbf_gyxlky ki_pbZevgZy h^_`^Z jZaebqgu_ aZsblgu_ m[_`bsZ

JZ^bhZdlb\gu_ ij_iZjZlu ke_^m_l ojZgblv

\ ki_pbZevguo

aZsblguo dhgl_cg_jZo h[uqgh k\bgph\uo

 

§72.

L_jfhy^_jghc j_Zdpb_c gZau\Z_lky j_Zdpby kebygby e_]dbo y^_j ijb1. hq_gv \ukhdhc l_fi_jZlmj_ ihjy^dZ khl_g fbeebhgh\ ]jZ^mkh\ Ijhl_dZgb_ l_jfhy^_jguo j_Zdpbc \hafh`gh lhevdh ijb hq_gv \ukhdbo2. l_fi_jZlmjZo l d g_h[oh^bfh ijb^Zlv y^jZf ^hklZlhqgh [hevrmx dbg_lbq_kdmx wg_j]bx ^ey bo k[eb`_gby gZ hq_gv fZeu_

jZkklhygby ijb dhlhjuo \hafh`gh bo kebygb_

37


3. Kebygb_ e_]dbo y^_j

4.

21 H+31

24 He+01n .

5.

Hkgh\gZy ljm^ghklv ijb hkms_kl\e_gbb l_jfhy^_jghc j_Zdpbb

aZdexqZ_lky \ lhf qlh[u m^_j`Zlv \ukhdhl_fi_jZlmjgmx ieZafm

\gmljb mklZgh\db ?keb ieZafZ dhkg_lky kl_ghd mklZgh\db \

dhlhjhc hgZ gZoh^blky lh hgb jZkieZ\ylky b ij_\jZlylky \ iZj

6.

< j_amevlZl_ l_jfhy^_jguo j_Zdpbc ijhl_dZxsbo gZ Khegp_

\u^_ey_lky wg_j]by g_h[oh^bfZy ^ey `bagb gZ A_fe_

38

MijZ`g_gby

MijZ`g_gb_

Fh`gh \ h[hbo kemqZyo l d jZaf_jZfb Z\lhfh[bey ijb ^Zgguo gZqZevguo1. mkeh\byo fh`gh ij_g_[j_qv

<k_ aZ\bkbl hl mkeh\bc aZ^Zq dhlhju_ gm`gh j_rblv ^bki_lq_jm b2.iZkkZ`bjm

Ih\_joghklv A_feb

3. IjZ\ b fZevqbd b ^_\hqdZ FZevqbd \u[jZe kbkl_fm hlkq_lZ k\yaZggmx4. k a_fe_c ^_\hqdZ²k dj_kehf dZjmk_eb

Z hlghkbl_evgh A_feb [ hlghkbl_evgh \h^u \ hlghkbl_evgh A5. feb ] hlghkbl_evgh hkb dhe_kZ ^ hlghkbl_evgh A_feb

MijZ`g_gb_

1. Ijhc^_gguc imlv 2. Ijyfhebg_cgh

MijZ`g_gb_

1.

 

 

 

 

 

 

 

 

s

 

s

 

 

 

x\ = xk

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ s\o

= 10 df + (–2 df) = 8 df;

xc

 

xf

 

 

 

O

x\

 

xf = xk

+ sfo

df df

df

 

 

 

 

 

 

2. Z o0

f [ sto = s1o + s2o

f ±f

f

\ xt = o0 + sto f f

f

 

 

 

 

 

 

 

 

 

 

 

 

MijZ`g_gb_

 

 

 

1. =jZnbd fh^mey \_dlhjZ kdhjhklb g_ fh`_l gZoh^blvky ih^ hkvx

Ot ihkdhevdm fh^mev \_dlhjZ kdhjhklb \k_]^Z iheh`bl_e_g =jZnbd

ijh_dpbb \_dlhjZ kdhjhklb fh`_l gZoh^blvky ih^ hkvx Ot,

ihkdhevdm agZd aZ\bkbl ijh_dpbb \_dlhjZ kdhjhklb hl \u[hjZ

kbkl_fu dhhj^bgZl

 

 

 

 

 

 

 

 

2.

 

 

vx,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

–90

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

39