ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 10.10.2024

Просмотров: 47

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Таблица 4.2. Пример вероятностной оценки СВ

Номер интервала, j

Интервал , тыс.км

Середина интервала xj, тыс.км

Число отказов nj в интервале

Частость (вероятность) ωii

Оценка накопленных вероятностей

отказа F

безотказности R

1

6…8

7

60

0,06

0,06

0,94

2

8…10

9

120

0,12

0,18

0,82

3

10…12

11

190

0,19

0,37

0,63

4

12…14

13

250

0,25

0,62

0,38

5

14…16

15

200

0,20

0,82

0,18

6

16…18

17

130

0,13

0,95

0,05

7

18…20

19

50

0,05

1,00

0

Всего

-

-

1000

1,00

-

-


Полученные при группировке СВ результаты сводятся в таблицу (табл. 4.1), данные которой имеют не только теоретическое, но и практическое значение. Например, по результатам наблюдений можно предположить, что у аналогичных изделий в тех же условиях эксплуатации и в интервале наработ­ки 6…8 тыс. км может отказать около 6 % изделий (ωi=pi= 0,06), в интервале 8…10 тыс. км – 12 %, интервале 10…12 тыс. км – 19 % и т.д.

Следовательно, имея систематизированные данные по отказам, можно прогнозировать и планировать число воздействий (программу работ), потреб­ности в рабочей силе, площадях, материалах и запасных частях.

4.4.3.1 Вероятность случайного события. В общем виде это отношение числа слу­чаев, благоприятствующих данному событию, к общему числу случаев.

Вероятность отказа рассматривается не вообще, а за определенную нара­ботку X:

, (4.9)

где т(х) число отказов за X, п – число наблюдений (изделий), или вероятность отказа изделия при наработке Х равна вероятности событий, при которых наработ­ка до отказа конкретных изделий хi окажется менее X. В примере (табл. 4.1) при Х = 10 тыс. км имеем

.

Отказ и безотказность являются противоположными событиями, поэтому

, (4.10)

где п - т(х) – число изделий, не отказавших за X.

В примере для Х = 10 тыс. км имеем

.

Обычно применяется следующая буквенная индексация рассмотренных собы­тий и понятий:

  • F (failure) отказ, авария, повреждение, вероятность этих событий;

  • R (reliability) безотказность, надежность, прочность, вероятность этих событий;

  • Р (probability) вероятность.

Вероятность отказа может быть получена также последовательным суммиро­ванием интервальных вероятностей за наработку X, т.е.

F(x)=p1+p2+…pj , (4.11)


где j - номер интервала, соответствующий наработке X.

4.4.3.2. Следующей характеристикой случайной величины является плотность вероятности (например, вероятности отказа) f(х) - функция, характеризующая вероятность отказа за малую единицу времени при работе узла, агрегата, детали без замены. Если вероятность отказа за наработку F(х) = т(х)/п, то, дифферен­цируя ее при п=const, получим плотность вероятности отказа

, (4.12)

где dm/dx – элементарная "скорость", с которой в любой момент времени проис­ходит приращение числа отказов при работе детали, агрегата без замены.

Так как f(х) = F'(х), то

. (4.13)

Поэтому F(х) называют интегральной функцией распределения, а f(х) – диф­ференциальной функцией распределения.

Так как

, а , то

. (4.14)

Имея значения F(х) или f(х), можно произвести оценку надежности и определить среднюю наработку до отказа

. (4.15)

4.4.3.3. При оценке качества изделий, нормировании ресурсов, в системе гарантийного обслуживания применяют гамма-процентный ресурс хγ. Это интегральное значение ресурса Хγ, которое вырабатывает без отказа не менее γ процентов всех оцениваемых изделий, т.е.

. (4.16)

В ТЭА обычно принимаются γ = 80, 85, 90 и 95 %. Для тракторов и автомобилей нормативное значение γ = 80 %.

Рис. 4.4. – Определение 80%-го гамма-ресурса графическим методом по кривым интегральной функции вероятности безотказной работы (1), отказа (2)

В рассматриваемом примере при γ = 95 % хγ = 7 тыс. км (табл. 4.1). Риск отказа изделия F в данной ситуации, т.е. более раннее достижение изделиями гамма-процентного ресурса, составляет около 5 %.


Гамма-процентный ресурс, используется при определении периодичности ТО по заданному уровню безотказности γ. Выражение lТО = Хγ означает, что обслуживание с периодичностью lТО гарантирует вероятность безотказной работы R≥γ и отказа F≤(1-γ).

4.4.3.4. Важным показателем надежности является интенсивность отказов λ(х)условная плотность вероятности возникновения отказа невосстанавливаемого изделия, определяемая для данного момента времени при условии, что отказа до этого момента не было. Аналитически для получения λ(х) необходимо элементар­ную вероятность dm/dx отнести к числу элементов, не отказавших к моменту х, т.е.

. (4.17)

Так как вероятность безотказной работы R(х) = [п - т(х)]/ п, то λ(х)= dm/dx*1/nR(x). Учитывая, что f(х)=1/ndm/dx получаем

. (4.18)

Таким образом, интенсивность отка­зов равна плотности вероятности отказа, деленной на вероятность безотказной работы для данного момента времени или пробега

. (4.19)

Это универсальная формула определения вероятности безотказной работы не­восстанавливаемого элемента для любого закона распределения. Зная интенсив­ность отказов, можно для любого момента времени или пробега определить вероятность безотказной работы. Существуют внезапные и постепенные отказы. Постепенные отказы описывают работу так называемых стареющих элементов.

4.4.3.5. Наглядное представление о величине и вариации случайных величин дает их графическое изображение: гистограммы (1, рис. 4.5) и полигоны (2, рис. 4.5) распределения, а также интегральные функции распределения вероятностей отказа (3, рис. 4.5) и безотказной работы (4, рис. 4.5) и дифференциальные функции или законы рас­пределения случайной величины (рис. 4.6, 4.7, 4.8).

Рис. 4.5. Графическое изображение случайной величины: 1 – гистограмма, 2 – полигон распределения, 3 – интегральная функция вероятности отказов и 4 – безотказной работы