ВУЗ: Не указан

Категория: Курсовая работа

Дисциплина: Не указана

Добавлен: 01.04.2023

Просмотров: 151

Скачиваний: 6

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Введение

В своей повседневной жизни мы не задумываемся, когда слушаем радио, смотрим телевизор, работаем на компьютере, звоним по сотовому телефону... В каждом из этих вещей множество электроники, которая существует благодаря радиотехнике. А ведь всего лишь 120 лет назад о таком и мечтать нельзя было: электричество было загадкой, подвластной только избранным! Сегодня же с азами электроники мы знакомимся в детстве.

Современный мир не имел бы такой вид, если бы не такие выдающиеся ученые, как Герц, Попов, Кальцекки, Онести, Бернулли, Шокли, Браттейн, Бардин, Зворыкин и многие другие. Они создавали различные приборы, устройства, детали, без которых невозможна работа современных устройств.

Вся современная техника работает по принципам радиоэлектроники, начиная от детской игрушки и заканчивая суперкомпьютером. Использование радио воистину безгранично: это и наш повседневный быт и высокие технологии. Радиоэлектроника применяется в медицине, биологии, химии, программировании (его бы просто не было без радиотехники!) и многих областях науки и техники. Практически всё медицинское оборудование (томографы, компьютеры, термометры, манометры…) существует благодаря радиотехнике.

На производстве качество зеркал проверяется при помощи фототранзисторов. На основе фотодиода работают счетчики количества выпущенной продукции.

Метеонаблюдения ведутся при помощи радиозондов. Космические аппараты, спутники, станции поддерживают связь с землёй при помощи радиоаппаратуры.

Глава 1. История создания

Основоположником всей современной радиотехники был выдающийся ученый Генрих Герц. Именно он доказал на практике теорию Максвелла, сгенерировав и обнаружив радиоволны. С 1889 года воспроизводя на лекциях и докладах опыты Герца, русский физик Попов видоизменил их, стремясь найти наиболее чувствительный индикатор «электрических волн». В 1894 занялся изучением влияния электрических раз­рядов на проводимость металлических порошков и сконструировал первый свой (изобретенный Кальцекки - Онести и Э. Бернулли) когерер для обнаружения электромагнитных волн – в виде стеклянной трубки с металлическими опилками.

К началу 1895 года Попов создал «грозоотметчик», который позволял надежно регистрировать приближение грозы на расстоянии до 30 км. В это устройство входили когерер — приспособление со звонком для автоматического восстановления чувствительности когерера встряхиванием, реле, приводившее в действие звонок, и даже приемная антенна в виде длинного вертикального провода. Таким образом, Попов создал прототип первого приемника. Он продемонстрировал его 25 апреля (7 мая) 1895 на заседании физиче­ского отделения Российского физико-химического общества и прочитал доклад «Об отношении металлических порошков к электрическим колебаниям», причем высказал мысль о возможности применения грозоотметчика для пере­дачи сигналов на расстояние.


12 (24) марта 1896 на заседании физического отделения Российского фи­зико-химического общества Попов при помощи своих приборов наглядно про­демонстрировал передачу сигналов на расстояние 250 м, передав первую в мире радиограмму из двух слов «Генрих Герц».

Несколько позднее создал подобные же приборы и провел с ними экспе­рименты итальянский физик и инженер Г. Маркони. В 1897 он получил патент на применение электромагнитных волн для беспроволочной связи. Благодаря большим материальным ресурсам и энергии Маркони, не имевший специаль­ного образования, добился широкого применения нового способа связи. К сожалению, Александр Степанович Попов не имел материальных ресурсов и поэтому не дожил до вручения ему Нобелевской премии за развитие радиоэлектроники. Её отдали Маркони в 1909 году.

Глава 2. Пионеры радиоэлектроники

2.1. Генрих РудольфГерц

ГЕНРИХ РУДОЛЬФ ГЕРЦ(1857 - 1894) родился 22 февраля 1857 в Гамбурге. Учился в Высшей технической школе в Дрездене, в Мюнхенском, а затем в Берлинском университете, по окончании которого в 1880 защитил докторскую диссертацию и стал ассистентом Г.Гельмгольца. За три года работы в Берлине опубликовал 15 статей на самые разные темы — от электромагнетизма до твердости материалов и испарения жидкостей. В 1883 стал доцентом кафедры теоретической физики в Кильском универси­тете. В 1885-1889 — профессор Высшей технической школы в Карлсруэ, с 1889 — профессор физики Боннского университета, преемник Р. Клаузиуса. Еще в Киле Герц написал теоретическую статью, посвя­щенную электродинамике Максвелла, и был хорошо подготовлен к работе в этой области. В 1887 году он предложил удачную конструкцию генератора электро­магнитных колебаний и метод их обнаружения. Наблюдая отражение, прелом­ление, интерференцию, дифракцию и поляризацию электромагнитных волн, показал их тождественность излучению, предсказанному Максвеллом. Устано­вил, что скорость распространения электромагнитных волн в воздухе равна скорости света. Развивая теорию Максвелла, он придал уравнениям электроди­намики симметричную форму, что позволило обнаружить полную связь между электрическими и магнитными явлениями (электродинамика Максвелла — Герца). В 1887 впервые наблюдал внешний фотоэффект, исследуя влияние УФ - лучей на электрический разряд; изучал свойства катодных лучей. Работы Герца в области электродинамики послужили основой при создании беспроволочной телеграфии, радио и телевидения. Именем Герца названа единица частоты ко­лебаний. Умер Герц в Бонне 1 января 1894. Умер он в возрасте 37 лет от общего заражения крови. Это событие стало трагедией для научного мира.


2.2. Попов Александр Степанович

Попов Александр Степанович 4 (16) марта 1859 года, пос. Туринские Рудники Верхотурского уезда Пермской губернии, ныне Краснотурьинск Ека­теринбургской области – 31 декабря 1905 (13 января 1906), Санкт - Петербург, российский физик и электротехник, один из пионеров применения электромаг­нитных волн в практических целях, в том числе для радиосвязи. Попов еще с детства Попов интересовался физикой, после он учился в ду­ховном училище, после поступил в Пермскую духовную семинарию. Окончив семинарию в 1877, приехал в Петербург. Блестяще сдав вступительные экзамены, был принят на физико-математический факультет Петербургского университета. В университете Попов все свободное время проводил в физической лабо­ратории, занимаясь опытами по электричеству. По окончании университета в 1882 защитил диссертацию на тему: «О принципах магнито - и динамоэлектри­ческих машин постоянного тока» и был оставлен при университете для научной работы и подготовки к профессорскому званию. Однако условия работы в университете не удовлетворили Попова, и в 1883 году он принял предложение занять должность ассистента в Минном офицерском классе в Кронштадте, единственном в России учебном заведении, в котором видное место занимала электротехника и велась работа по практическому при­менению электричества (в морском деле). В Минном офицерском классе Попов проработал 18 лет, сочетая педагогическую деятельность с научными исследо­ваниями. Здесь он начал изучение электромагнитных волн, завершившееся изо­бретением радио. Попов не пропускал ни одного открытия или изобретения в области энергетики. После опубликования в 1888 работ Г. Герца, открывшего «лучи электрической силы», Попов стал изучать электрические явления. В начале 1897 Попов осуществил радиосвязь между берегом и кораблем, а в 1898 дальность радиосвязи между кораблями была доведена до 11 км. Боль­шой победой Попова и едва зародившейся радиосвязи было спасение 27 рыба­ков с оторванной льдины, унесенной в море. Радиограмма, переданная на рас­стояние 44 км, позволила ледоколу своевременно выйти в море. Работы Попова были отмечены золотой медалью на Всемирной выставке 1900 в Париже. В 1901 на Черном море Попов в своих опытах достигал дальности в 148 км. Но работа Попова не была по достоинству оценена.


Глава 3. Строение и принцип работы

3.1. Диапазоны радиоволн

Весьма широкий участок радиоволн, отведенный для радиовещательных станций, условно подразделен на несколько диапазонов: длинноволновый (со­кращенно ДВ), средневолновый (СВ), коротковолновый (КВ), ультракоротко­волновый (УКВ). В нашей стране длинноволновый диа­пазон охватывает волны длиной от 735,3 до 2000 м, что соответствует частотам 408 —150 кГц; средне­волновый — радиоволны длиной от 186,9 до 571,4 м, что соответствует часто­там 1605—525 кГц; коротковолновый — радио­волны длиной от 24,8 до 75,5 м, что соответствует частотам 12,1 — 3,95 МГц; ультракоротковолновый — радио­волны длиной от 4,11 до 4,56 м, что соответствует частотам 73 — 65,8 МГц.

Радиоволны УКВ диапазона называют также метровыми волнами; вообще же ультракороткими волнами называют все волны короче 10 м. В этом диапа­зоне ведутся телевизионные передачи, работают связные радиостанции, обору­до­ванные на автомашинах пожарной охраны, такси, медицинского обслужива­ния населения на дому, безопасности уличного движения.

Коротковолновые радиовещательные станции неравномерно распределены по КВ диапазону: больше всего их работает на волнах длиной около 25, 31, 41 и 50 м. Соответственно этому коротковолновый радиовещательный диапазон подразделяется на 25, 31, 41 и 50-метровый поддиапазоны.

Согласно международному соглашению волна длиной 600 м (500 кГц) от­ведена для передачи сигналов бедствия кораблями в море — S0S. На этой волне работают все аварийные морские радиопередатчики, на эту волну настроены приемники всех спасательных станций и маяков.

3.2. Принципы работы радиопередатчика и приёмника

3. 2. 1. Генерация электромагнитных колебаний

Сложность изготовления и настройки элементов и узлов передатчика (и приемника тоже) напрямую зависит от частоты. Больше частота – сложней изготовление и выше стоимость. В свою очередь, отклонение частоты влияет на согласованную работу передатчика и приемника. Например, отклонение частоты средневолнового (300 кГц) передатчика на 1% вызовет изменение частоты на ±3 кГц, что в принципе допустимо. А отклонение на 1% передатчика, работающего на частоте 450 МГц, даст отклонение частоты на ±4.5 МГц. А это по ширине больше длинноволнового, средневолнового и частично коротковолнового диапазонов вместе взятых! Первые радиопередатчики работали в телеграфном режиме, т.е. сообщения передавались точками и тире кода Морзе. Для таких систем было не важно качество сигнала, а было важно его наличие. Довольно просто отличить точку от тира при любом качестве передачи. Все начало усложнятся с появлением голосовой связи. Понадобились новые открытия, и они не замедлили появиться.


Допустим, мы построили генератор высокочастотных колебаний. Что же дальше? Как заставить электромагнитные волны «нести» полезную информацию, в частности наш голос? Еще в 1900 американский инженер Реджинальд Фессенден предложил использовать для этих целей модуляцию.

3.2.2. Модуляция

Полезный звуковой сигнал, например, голос, представляет собой акустические колебания или звуковые волны. Очевидно, что эти колебания должны быть преобразованы в электрический вид. Обычно, преобразование обычно осуществляется с помощью микрофона.

Допустим, мы имеем электрический сигнал звуковой частоты и имеем высокочастотную электромагнитную волну – несущую. То есть у нас есть информация и несущая для ее транспортировки. Как же «нагрузить» электромагнитную волну звуком? Для этого и применяется модуляция.

Модуляция — это процесс объединения информационного, в нашем случае звукового сигнала, с частотой генератора. Модуляция определенным образом изменяет форму ВЧ колебаний и бывает нескольких видов. В радиосвязи чаще всего используют амплитудную (АМ) и частотную модуляцию (ЧМ).

Рис. 1. Принцип амплитудной и частотной модуляции.

Как видите все очень просто. Модулирующий сигнал изменяет либо амплитуду несущей, либо ее частоту. И в том, и в другом случае несущая нагружается полезным сигналом.

Мы заставили электромагнитную волну нести наш голос и в результате получили радиопередатчик.

Рис. 2. Упрощенная структурная схема радиопередатчика.

Конечно на практике все намного сложней, ведь еще необходимо усилить сигнал, отфильтровать шумы и помехи, обеспечить возможность перестройки на разные частоты и т.д. А сколько различных сервисных функций в обычной портативной радиостанции или в сотовом телефоне? Это и вызовы конкретных абонентов, и контроль канала или частоты, и индикация режимов работы и т.д., и т.п. Но принцип работы от этого не меняется. Кстати, в современных радиопередатчиках основные режимы управления обычно возложены на одну единственную микросхему – микропроцессор, который управляет функционированием устройства и взаимодействием всех блоков.

3.2.3. Общие принципы работы

Все мы пользуемся устройствами приема электромагнитных волн, но редко задумываемся о принципах их работы. В первых приемниках, созданных Поповым и Маркони для передачи информации, использовался телеграф (точки и тире кода Морзе). В то время не особенно беспокоились над приемом сигналов конкретной радиостанции. Эфир был относительно чист. Кроме того, при приеме телеграфных сигналов можно было не задумываться о его качестве. Код Морзе можно было передавать хоть тоном, хоть треском, хоть скрипом. Главное – это отличить точку от тире. Дальность связи в основном определялась мощностью передатчика и эффективностью (габаритами) антенн.