Файл: Глава 1 Общие вопросы проектирования электрических машин.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 27.04.2019

Просмотров: 1608

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

, (1.9)

где

; (1.10)

. (1.11)

Для неремонтируемых объектов используется другой показатель — интенсивность отказов . Интенсивность отказов — условная плотность вероятности возникновения отказа объекта, определяемая при условии, что до рассматриваемого момента времени отказ не возник:

, (1.12)

где

(1.13)

При .

Статистически интенсивность отказов определяют следующим образом:

, (1.14)

где — среднее число объектов, исправно работающих в интервале ; — число работоспособных объектов в начале интервала ; — число работоспособных объектов в конце интервала ; — число отказавших объектов в интервале .

Одним из показателей безотказности является средняя наработка до отказа — математическое ожидание наработки объекта до первого отказа:

. (1.15)

На практике используется следующая оценка средней наработки до отказа:

, (1.16)

где — наработка до отказа i-го объекта; Nчисло объектов.

Для восстанавливаемых объектов пользуются средней наработкой на отказ – отношением суммарной наработки восстанавливаемого объекта к математическому ожиданию числа его отказов в течение этой наработки.

Наиболее распространенными показателями долговечности электрических машин являются средний ресурс и средний срок службы. Средний ресурс – математическое ожидание ресурса. Ресурс – это суммарная наработка объекта от начала его эксплуатации или ее возобновления после ремонта до перехода в предельное состояние. Средний срок службы – математическое ожидание срока службы. Срок службы – календарная продолжительность эксплуатации от начала эксплуатации объекта или ее возобновления после ремонта до перехода в предельное состояние.

Для характеристики нескольких свойств надежности объектов используют комплексные показатели надежности. Среди них большое значение имеет коэффициент готовности:

(1.17)

где – средняя наработка на отказ; - среднее время восстановления.

При рассмотрении работоспособности электрических машин наблюдаются характерные периоды, отражающие главные причины их отказов (рис. 1.8). Период I – это период приработки, когда при испытаниях или начальной стадии эксплуатации происходят выявление и отбраковка конструктивных и производственных недостатков. Для предотвращения отказов в эксплуатации в период приработки производят замену дефектных деталей исправными и, если это возможно, приработку отдельных узлов. Для электрических машин производится проверка изоляции обмоток, притирка щеток на коллекторе или контактных кольцах, настройка систем регулирования и возбуждения, наладка подшипниковых узлов. Для ответственных электрических машин период приработки происходит непосредственно на заводе-изготовителе, чтобы избежать отказов в эксплуатации, обусловленные производственными причинами [19].



Рис. 1.8. Интенсивность отказов


В большинстве случаев в период приработки вероятность безотказной работы может быть описана законом Вейбулла

(1.18)

где - вероятность безотказной работы за время t; - параметры.

После периода приработки начинается период нормальной эксплуатации II, когда интенсивность отказов падает и в течение длительного времени остается примерно постоянной (см. рис. 1.8). В этот период происходят внезапные отказы, т. е. может иметь место случайное повышение нагрузок. Распределение наработки до отказа описывается показательным законом, при этом функция плотности распределения

(1.19)

Вероятность безотказной работы

. (1.20)

При постоянной величине интенсивности отказов средняя наработка до отказа

. (1.21)

Период работы электрической машины III характеризуется увеличением интенсивности отказов (см. рис. 1.8). С момента времени элементы и узлы машины начинают отказывать чаще, что вызвано их старением и износом. У электрических машин в этот период отмечается существенное нарушение свойств изоляции, уменьшение ее электрической прочности, износ тел качения подшипников, изменение структуры смазки, износ коллектора и изменение структуры материала коллекторных пластин, повышение вибраций и т. д.

Распределение наработки до отказа по причине изнашивания и старения описывают с помощью нормального закона. Так как наработка до отказа является случайной величиной, которая может принимать только положительные значения, то распределение Т может быть усечено-нормальным. Оно получается из нормального при ограничении интервала возможных значений этой величины.

Плотность усеченного нормального распределения определяется из выражения

, (1.22)

где — нормирующий множитель; — функция нормального распределения наработки до отказа:

, (1.23)

где — математическое ожидание; — среднеквадратичное отклонение.

Величина в (1.22) определяется с помощью нормированной функции Лапласа :

, (1.24)

где

интервалы ограничения средней наработки до отказа.

Практика эксплуатации электрических машин позволила наиболее полно исследовать статистическими методами надежность асинхронных двигателей. Систематическое наблюдение двигателей от начала эксплуатаций до капитального ремонта показало, что капитальному ремонту подвергаются 20% двигателей. При относительной простоте конструкции надежность асинхронных двигателей все еще остается низкой: средней срок службы составляет 20 тыс. ч (5 лет) и колеблется в зависимости от области применения — от 60 тыс. ч (в химической промышленности) до 6 тыс. ч (в горнодобывающей промышленности).


Основными причинами выхода из строя асинхронных двигателей являются их неправильная эксплуатация, несовершенная защита или ее отсутствие. При защите плавкими предохранителями двигатели отказывают из-за работы на двух фазах. Данные эксплуатации показывают, что 80% аварий от работы на двух фазах происходят из-за отсутствия тепловой защиты и 20% — из-за неисправности, а 15% двигателей отказывают также из-за несоответствия конструктивного исполнения условиям эксплуатации. Наблюдаются также отказы двигателей, обусловленные неправильным выбором двигателей по мощности.

Иногда превышение температуры двигателей вызываются неравномерностью воздушного зазора, что приводит к задеванию ротора о статор машины. Это может быть обусловлено тем, что технологический процесс и состояние оборудования не обеспечивают требуемую обработку станин, подшипниковых узлов и пакетов ротора. Неравномерность воздушного зазора может быть вызвана и прогибом вала в случае его недостаточной жесткости. Причиной отказа обмоток двигателей нередко является низкое качество изоляции обмоточных проводов и пропитывающих лаков. Преждевременные отказы обмоток вызываются часто несовершенными технологическими процессами, некачественной пропиткой, намоткой и укладкой в пазы витков обмотки статора. Основные причины отказов можно количественно охарактеризовать следующим образом: неправильное применение — 15…35%, недостатки эксплуатации 25…50%, недостатки конструкции и технологии 30…35%. Лишь 10…12% двигателей выходят из строя вследствие процессов износа и старения.

В подавляющем большинстве случаев отказы двигателей происходят из-за повреждения обмоток 85…95%, 2…5% двигателей отказывают из-за повреждений подшипников. Основные отказы обмоток приходятся на межвитковые замыкания 93%, пробой изоляции 2%, пробой межфазной изоляции 5%. Это распределение показывает, что основное внимание в асинхронных двигателях со всыпной обмоткой должно быть уделено межвитковой изоляции.

Для межвитковой изоляции разработана математическая модель надежности. Элементами модели являются два витка, расположенных рядом в пазу или лобовой части и разделенных межвитковой изоляции, состоящей из собственной изоляции обмоточного провода, пропиточного лака и воздушных прослоек. Для безотказной работы обмотки необходима исправность всех ее составляющих элементов. Отказ происходит тогда, когда приложенное напряжение к соседним виткам превышает пробивное напряжение межвитковой изоляции.

Вероятность безотказной работы межвитковой изоляции обмотки, состоящей из n пар проводников, равна:

, (1.25)

где — плотность распределения приложенных напряжений; — функция распределения пробивного напряжения межвитковой изоляции.


Распределение приложенного напряжения между витками зависят от напряжения на фазе, числа последовательно соединенных секций в фазе, кратности и распределения коммутационных напряжений вдоль обмотки и числа проводников в пазу. Пробивное напряжение изоляции обмоток зависит от свойств изоляционных материалов и условий эксплуатации.

Синхронные машины являются, в основном, крупными электрическими машинами, изготовляемыми мелкими сериями, что затрудняет обработку статистических данных. Синхронные машины являются ремонтируемыми объектами, поэтому для таких машин важны, как показатели надежности коэффициент готовности и среднее время восстановления. Синхронные машины отличаются тем, что имеют относительно высокое качество обслуживания; количество отказов по причинам, связанным с ошибками персонала, соизмеримо с количеством отказов из-за дефектов изготовления. Вместе с тем в процессе эксплуатации обычно происходят доводка, усовершенствование, модернизация машины. Статистические данные свидетельствуют о том, что одной из основных причин отказов синхронных машин являются заводские дефекты. Число аварийных отключений, вызванных дефектами изготовления, значительно больше вызванных недостатками конструкции. В течение первого периода работы (5… 10 тыс. ч) имеет место приработка, когда заменяют и ремонтируют детали с заводскими дефектами. Период нормальной эксплуатации составляет 15…20 лет, после чего начинаются отказы, связанные с износом и старением материалов и элементов конструкции.

Для оценки эксплуатационной надежности синхронных генераторов широко применяют такой показатель, как удельная повреждаемость — удельное число аварийных отключений, которое измеряется средним числом повреждений на одну машину в год, выраженное в процентах. Установлено, что повреждаемость, вызванная заводскими недостатками, составляет для турбогенераторов 3,5%, для гидрогенераторов 4%. Удельная повреждаемость возрастает с ростом мощности.

Большинство повреждений относятся к обмотке статора. Основным местом повреждений изоляции обмоток статора является пазовая часть обмотки, пробой которой составляет примерно 50% всех пробоев обмоток статора. На процесс изменения и разрушения изоляции оказывает влияние возрастание нагрузок: повышенные механические усилия при переходных процессах, вибрации, перенапряжения, перегрузки по току. В процессе изготовления могут появиться участки с пониженной электрической прочностью. Это связано с изготовлением стержней обмоток с размерами, выходящими за пределы допуска, что приводит к повреждению изоляции при укладке обмотки в пазы. В процессе изготовления возможно попадание на поверхность изоляции ферромагнитных частиц, вибрация которых в магнитном поле приводит к постепенному разрушению изоляции. Вследствие поломки листов статора создаются условия повреждения изоляции стержней.


Надежность изоляции лобовых частей во многом определяется способом их крепления. Лобовые части обмоток крупных электрических машин наибольшей опасности подвергаются при переходных процессах, при этом возможны разрывы бандажей, деформация частей обмотки, появление трещин и вмятин в изоляции. В процессе эксплуатации синхронных генераторов отмечаются также пробои изоляции вследствие попадания масла и влаги. Среди повреждений активной стали, наиболее частыми являются ослабление запрессовки, расшатывание сердечника стали под действием вибрационных и магнитных сил, повреждение изоляционной пленки на поверхности листов.

На подвижных частях машины частые повреждения возникают на бандажных узлах. Они вызываются действием центробежных сил, деформациями вала и усилиями горячих посадок на вал. Под действием температуры происходят перемещение обмотки ротора, деформация проводников обмотки. Возможно также перекрытие каналов охлаждения и снижения сопротивления изоляции при попадании влаги, масла и пыли на обмотку.

Характерными повреждениями и нарушениями в работе подшипниковых узлов крупных синхронных машин являются: выплавление баббита, повреждение вкладышей и цапф подшипниковыми токами. Выплавление баббита обычно происходит при нарушении работы систем маслоснабжения. Наиболее распространенной неисправностью подшипников является вытекание масла. Подшипниковые токи возникают из-за несимметрии в магнитной системе, обусловленной неравномерным зазором, наличием осевых каналов, несимметричным размещением сегментов активной стали. Замыкание обмотки ротора на корпус также приводит к появлению подшипниковых токов. Это явление сопровождается повреждением поверхностей вкладышей и шеек вала вследствие эрозии под воздействием разрывов.

Для обеспечения надежности крупных синхронных машин большое внимание уделяется контактно-щеточной системе и возбудителям. Число отказов возбудителей иногда превышает число отказов обмоток ротора и статора.

Статистическая обработка эксплуатационных данных показывает, что неравномерное токораспределение вызывает большой разброс скорости изнашивания щеток. Это вызвано многими причинами, среди которых важнейшими являются характеристики и конструкция материалов скользящего контакта, плотность тока под щетками и соотношение электрических и механических потерь в контакте, вид вольт-амперных характеристик щеток. При эксплуатации генераторов износ щеток и контактных колец зависит также от величины вибрации колец, удельного давления на щетки, попадания масла на щетки и на контактную поверхность колец из опорных подшипников. При эксплуатации турбогенераторов возможно отделение втулки контактных колец от вала в месте ее посадки. Это вызывает резкое увеличение вибрации колец и общее ухудшение работы щеточного аппарата.