Файл: Состав и свойства вычислительных систем. Информационное и математическое обеспечение вычислительных систем (Классификация вычислительных систем).pdf
Добавлен: 04.04.2023
Просмотров: 81
Скачиваний: 1
СОДЕРЖАНИЕ
Глава 1. СОСТАВ И СВОЙСТВА ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ
Основные понятия, используемые при изучении вычислительных систем
Классификация вычислительных систем
Структурная организация вычислительных систем
Глава 2. Информационное и математическое обеспечение вычислительных систем
2.1. Математическое обеспечение
Любая другая подключаемая ЭВМ комплекса рассматривается как специальное периферийное оборудование. В зависимости от территориальной разобщенности ЭВМ и используемых средств сопряжения обеспечивается различная оперативность их информационного взаимодействия [12].
Многопроцессорные (МПС) строятся при комплексировании нескольких процессоров. В качестве общего ресурса они имеют общую оперативную память (ООП). Параллельная работа процессоров и использование ООП обеспечиваются под управлением единой общей операционной системы. По сравнению с ММС здесь достигается наивысшая оперативность взаимодейственные комплексы; б - многопроцессорные системы вычислителей-процессоров. Многие исследователи считают, что использование МПС является основным магистральным путем развития вычислительной техники новых поколений. Однако МПС имеют и существенные недостатки. Они в первую очередь связаны с использованием ресурсов общей оперативной памяти [17].
При большом количестве комплексируемых процессоров возможно возникновение конфликтных ситуаций, когда несколько процессоров обращаются с операциями типа “чтение” и “запись” к одним и тем же областям памяти. Помимо процессоров к ООП подключаются все каналы (процессоры ввода-вывода), средства измерения времени и т.д. Поэтому вторым серьезным недостатком МПС является проблема коммутации абонентов и доступа их к ООП. От того, насколько удачно решаются эти проблемы, и зависит эффективность применения МПС. Это решение обеспечивается аппаратурно-программными средствами. Процедуры взаимодействия очень сильно усложняют структуру ОС МПС. Накопленный опыт построения подобных систем показал, что они эффективны при небольшом числе комплексируемых процессоров [8].
По типу ЭВМ или процессоров, используемых для построения ВС, различают однородные и неоднородные системы. Однородные предполагают комплексирование однотипных ЭВМ (процессоров), неоднородные - разнотипных. В однородных системах значительно упрощаются разработка и обслуживание технических и программных (в основном ОС) средств. В них обеспечивается возможность стандартизации и унификации соединений и процедур взаимодействия элементов системы. Упрощается обслуживание систем, облегчаются модернизация и их развитие. Вместе с тем существуют и неоднородные ВС, в которых комплексируемые элементы очень сильно отличаются по своим техническим и функциональным характеристикам. Обычно это связано с необходимостью параллельного выполнения многофункциональной обработки [16].
Так, при построении ММС, обслуживающих каналы связи, целесообразно объединять в комплекс связанные, коммуникационные машины и машины обработки данных. В таких системах коммуникационные ЭВМ выполняют функции связи, контроля получаемой и передаваемой информации, формирования пакетов задач и т.д. ЭВМ обработки данных не занимаются не свойственными им работами по обеспечению взаимодействия в сети, а все их ресурсы переключаются на обработку данных. Неоднородные системы находят применение и в МПС. Многие ЭВМ, в том числе и ПЭВМ, могут использовать сопроцессоры: десятичной арифметики, матричные и т.п. [4]
По степени территориальной разобщенности вычислительных модулей ВС делятся на системы совмещенного (сосредоточенного) и распределенного (разобщенного) типов. Обычно такое деление касается только ММС. Многопроцессорные системы относятся к системам совмещенного типа. Более того, учитывая успехи микроэлектроники, это совмещение может быть очень глубоким. При появлении новых сверхбольших интегральных схем (СБИС) появляется возможность иметь в одном кристалле несколько параллельно работающих процессоров [5].
Совмещенные и распределенные ММС сильно различаются оперативностью взаимодействия в зависимости от удаленности ЭВМ. Время передачи информации между соседними ЭВМ, соединенными простым кабелем, может быть много меньше времени передачи данных по каналам связи. Как правило, все выпускаемые в мире ЭВМ имеют средства прямого взаимодействия и средства подключения к сетям ЭВМ. Для ПЭВМ такими средствами являются нуль модемы, модемы и сетевые карты как элементы техники связи [13].
По методам управления элементами ВС различают централизованные, децентрализованные и со смешанным управлением. Помимо параллельных вычислений, производимых элементами системы, необходимо выделять ресурсы на обеспечение управления этими вычислениями. В централизованных за это отвечает главная, или диспетчерская, ЭВМ (процессор). Ее задачей являются распределение нагрузки между элементами, выделение ресурсов, контроль состояния ресурсов, координация взаимодействия. Централизованный орган управления в системе может быть жестко фиксирован или эти функции могут передаваться другой ЭВМ (процессору), что способствует повышению надежности системы. Централизованные системы имеют более простые ОС [11].
В децентрализованных функции управления распределены между ее элементами. Каждая ЭВМ (процессор) системы сохраняет известную автономию, а необходимое взаимодействие между элементами устанавливается по специальным наборам сигналов. С развитием ВС и, в частности, сетей ЭВМ интерес к децентрализованным системам постоянно растет. В системах со смешанным управлением совмещаются процедуры централизованного и децентрализованного управления. Перераспределение функций осуществляется в ходе вычислительного процесса исходя из сложившейся ситуации [12].
По принципу закрепления вычислительных функций за отдельными ЭВМ (процессорами) различают системы с жестким и плавающим закреплением функций. В зависимости от типа ВС следует решать задачи статического или динамического размещения программных модулей и массивов данных, обеспечивая необходимую гибкость системы и надежность ее функционирования.
По режиму работы ВС различают системы, работающие в оперативном и неоперативном временных режимах. Первые, как правило, используют режим реального масштаба времени. Этот режим характеризуется жесткими ограничениями на время решения задач в системе и предполагает высокую степень автоматизации процедур ввода-вывода и обработки данных. Наибольший интерес у исследователей всех рангов (проектировщиков, аналитиков и пользователей) вызывают структурные признаки ВС. От того, насколько структура ВС соответствует структуре решаемых на этой системе задач, зависит эффективность применения ЭВМ в целом [7].
Структурные признаки, в свою очередь, отличаются многообразием: топология управляющих и информационных связей между элементами системы, способность системы к перестройке и перераспределению функций, иерархия уровней взаимодействия элементов. В наибольшей степени структурные характеристики определяются архитектурой системы [7].
Разработка микропроцессора, процессора на одной интегральной микросхеме, впервые позволила разработать доступные однопользовательские микрокомпьютеры. Однако медленная вычислительная мощность первых микрокомпьютеров делала их привлекательными только для любителей, а не для бизнес-рынка. Однако в 1977 году индустрия персональных компьютеров получила широкое распространение, представив готовые домашние компьютеры трех производителей [9].
Структурная организация вычислительных систем
Упрощенная схема вычислительного процесса может быть описана следующим образом. По указанию устройства управления (УУ) управляющая информационная (команда) считывает из запоминающего устройства, передается в УУ и расшифровывается. Она определяет, какая операция и над какими данными должна выполняться в АЛУ. Получив соответствующие указания и адреса, запоминающее устройство выдает требуемые числа в АЛУ, где они преобразуются. Результаты обработки пересылаются в ОЗУ на хранение. Окончательная результатная информация из ОЗУ с помощью устройств вывода поступает на дисплей, печатающее устройство или на машинный носитель. Вычислительные системы имеют многоуровневую информационную организацию [4].
На I уровне системы располагаются ЦП, в состав которых входят АЛУ, центральные устройства управления и внутренняя память процессоров (иногда сверхоперативная память СОП). Процессоров может быть несколько. Они могут быть универсальными и специализированными и отличаться своими функциональными возможностями. На этом же уровне находятся модули ОЗУ [4].
II уровень составляют процессоры ввода-вывода (каналы ввода - вывода), которые предназначены для выполнения операций ввода - вывода и обеспечивают все двусторонние связи между ОП и процессором, с одной стороны, и множеством различных периферийных устройств - с другой. Каналы ввода - вывода позволяют осуществлять параллельную работу высокоскоростного ЦП и сравнительно медленно действующих устройств ввода - вывода с различными техническими характеристиками. Благодаря такому построению исключает "жесткое " подключение периферийных устройств к ЦП [20].
Канал ввода-вывода представляет собой самостоятельное в логическом отношении устройство, работающее по собственной программе, хранимой в памяти машины. Каналы ввода - вывода универсальных ВС в зависимости от пропускной способности канала, режима его работы и характеристик подключаемых периферийных устройств делятся на быстрые (селекторные - КС) и медленные (мультиплексные - КМ) [14].
Селекторный канал обладает высокой пропускной способностью и управляет обменом информации с ВЗУ. Этот канал позволяет только одному из присоединенных к нему устройств ввода - вывода осуществлять в данный момент операцию ввода - вывода.
Мультиплексный канал обеспечивает связь медленнодействующих устройств ввода-вывода с ЦП и допускает параллельное подключение нескольких устройств. Этот канал включает в свой состав несколько подканалов и может одновременно выполнять по одной операции в каждом подканале. Подканалом являются средства канала, необходимые для осуществления операции ввода - вывода и связи с одним периферийным устройством. Информационные магистрали канала, по которым происходит обмен информацией, попеременно обслуживаются параллельно работающими устройствами ввода - вывода. Устройства ввода - вывода подключается к каналу на короткое время, необходимое для передачи или приема информации. Адаптер "канал - канал " предназначен для обмена информацией между процессорами и различными модулями ОП и обеспечивает создание МПС или ММС вычислительного комплекса [10].
На III уровне находятся интерфейс ввода - вывода (устройство сопряжения) и УУВУ. Связь ЦП с внешними устройствами, как через селекторный, так и через мультиплексный каналы выполняется по универсальному стандартному принципу, заключающемуся в наличии определенного набора сигналов и одной и той же временной диаграммы взаимодействия для всех внешних устройств независимо от их типа [13]. Благодаря наличию стандартного сопряжения последовательность управляющих сигналов одинакова для всех устройств, связанных с одним каналом.
Возможность изменения конфигурации системы ввода- вывода достигается использованием различных типов УУВУ: одиночных, группового и разделенного [2].
Одиночные УУВУ применяются для управления работой только одного внешнего устройства, например, устройства вывода на печать. Групповое УУВУ (ГрУУВУ) обслуживает несколько однотипных внешних устройств, причем в каждый момент времени оно обслуживает только одно ВУ, например, ВЗУ на магнитном диске. Разделенное УУВУ может быть подсоединено к двум каналам, однако на все время выполнения заданной операции ввода- вывода оно работает только с одним каналом.
ГрУУВУ конструктивно расположено в отдельной стойке, поэтому необходим малый интерфейс, унифицированная система связей и сигналов между УУВУ и соответствующими внешними запоминающими устройствами. Одиночное УУВУ, которое управляет работой одного устройства ввода-вывода, обычно размещается конструктивно в одной стойке с этим внешним устройством [2].
Интерфейс обеспечивает:
· стандартную организацию выполнения операций ввода-вывода;
· простоту программирования операций ввода-вывода;
· возможность обмена информацией с несколькими ЭВМ;
· возможность наращивания мощности по вводу-выводу.
В состав интерфейса входят совокупность унифицированных шин для передачи информации и система унифицированных сигналов, электронных схем и алгоритмов управления обменом информацией.
IV уровень составляет периферийные устройства. К ним относятся ВЗУ и устройства ввода-вывода [9].
В современных вычислительных системах можно выделить V уровень, который составляют абонентские пункты, аппаратура передачи данных и каналы связи. Этот уровень необходим при использовании ВС в системах распределенной обработки данных, вычислительных центрах коллективного пользования, вычислительных сетях.
В описанной многоуровневой структуре реализуется классическая фон- неймановская организация ВС и предполагает последовательную обработку информации по заранее составленной программе.
Вывод по первой главе: повышение производительности ВС классической организации сдерживалась ограниченными возможностями элементной базы.
ЭВМ пятого поколения предполагает создание параллельных систем, имеющих их отличную от представленной выше структуру. Основой таких систем является большое количество элементарных процессоров, которые могут работать параллельно в различном сочетании. Подобные структуры получили название потоковых. Отдельные ЭВМ включаются в ВС без проводов (с помощью радиоволн), что значительно расширило возможности их использования.