ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 04.12.2019
Просмотров: 7639
Скачиваний: 7
Рассмотрим условный пример. Имеются два варианта возможного сочетания факторов при производстве телевизоров. В первом варианте для сборки одного телевизора используется 3 ед. труда и 1 ед. капитала. Во втором варианте требуется 2 ед. труда и 1 ед. капитала. Очевидно, что второй вариант является технологически более эффективным, так как при том же количестве единиц капитала используется меньшее количество единиц труда. Следовательно, производственная функция не будет учитывать первый, технологически неэффективный, вариант производства. Причем, не только сами ресурсы должны использоваться наиболее эффективно, но и создаваемая в результате продукция должна отвечать требованиям потребителей и по цене, и по качеству. Фирма должна одновременно и обеспечивать потребности покупателей, и применять наиболее эффективные технологические и экономические способы производства. Если фирма не выполняет эти условия, то она неизбежно утратит свою конкурентоспособность.
Базисные пропорции производственной функции могут быть исследованы на примере простой двухфакторной системы: 2 вида ресурсов -1 вид конечной продукции. Рассмотрим производственный процесс, при котором различные количества труда (L) и капитала (К) могут быть использованы для производства телевизоров (Q). Производственная функция для такой системы будет иметь следующий вид:
Q = f (L, К) (1)
Д
анные,
характеризующие нашу производственную
функцию, представлены в таблице 10.1.
Из таблицы 10.1 мы видим, что существуют определенные комбинации различных факторов для производства максимального объема конкретного вида продукции. Анализ таблицы позволяет сделать два важных вывода.
Во-первых, производственная функция показывает максимальное количество товара, которое может быть произведено при различных сочетаниях факторов L и К. Например, сочетание 2 ед. труда и 3 ед. капитала обеспечивает выпуск 48 ед. продукции, 4 ед. труда в сочетании с 6 ед. капитала дает в результате 90 ед. продукции и т. д.
Во-вторых, производственная функция показывает альтернативные возможности, при которых различные комбинации факторов обеспечивают один и тот же объем выпуска продукции. Например, объем выпуска продукции, равный 106 ед. (выделен жирным шрифтом), может быть получен при следующих сочетаниях факторов: 6 ед. труда и 6 ед. капитала; 8 ед. труда и 5 ед. капитала.
При изучении производственной функции необходимо подробнее рассмотреть известные нам категории эффекта масштаба производства и отдачи от фактора.
Масштаб производства задается производственной функцией. В нашем примере производственная функция выпуска телевизоров описывается уравнением (1). Если фирма принимает решение об одновременном и пропорциональном изменении количества всех применяемых факторов, то налицо - изменение масштаба производства.
Предположим, что фирма, имеющая первоначально объем выпуска продукции Qv принимает решение об увеличении масштаба производства в п раз. В этом случае заданная производственная функция примет следующий вид: Q2 = f(nL, пК), где Q2- объем выпуска телевизоров после изменения масштаба производства.
Взаимосвязь между изменением масштаба производства и соответствующим изменением в объеме выпуска продукции называется отдачей от масштаба. Отдачу от масштаба можно измерить путем сравнения процентного изменения в выпуске продукции с процентным изменением в количестве всех применяемых факторов.
Принято различать постоянную, возрастающую и убывающую отдачу от масштаба.
Постоянная отдача от масштаба. Если при пропорциональном увеличении количества факторов в п раз, объем производства тоже возрастет в п раз, то имеет место постоянная отдача от масштаба, т. е. Q2 = nQ1 (где Q1 - первоначальный объем производства). Например, фирма столкнется с ситуацией постоянной отдачи от масштаба, если при пропорциональном удвоении количества всех ресурсов объем производства тоже удвоится.
Возрастающая отдача от масштаба. В случае, когда пропорциональное увеличение количества всех применяемых факторов в п раз вызовет рост объема производства больше, чем в п раз, наблюдается возрастающая отдача от масштаба, т. е. Q2 > лОг
Обратимся к данным таблицы 10.1. Предположим, что фирма для производства 34 телевизоров использует следующее сочетание факторов: 1 ед. капитала и 3 ед. труда. В случае пропорционального удвоения всех факторов их комбинация будет выглядеть следующим образом: 2 ед. капитала и 6 ед. труда. Такое сочетание факторов обеспечит объем производства, равный 71 телевизору. Это означает, что увеличение количества факторов производства на 100% привело к росту объема выпуска продукции почти на 109%. В данном случае производственная функция демонстрирует возрастающую отдачу от масштаба.
Но каковы источники возрастающей отдачи? Важнейшими из них являются специализации в рамках фирмы и используемая технология. Увеличение масштабов производства может позволить фирме нанимать специалистов в той или иной области производственной и сбытовой деятельности. Действительно, маленькая обувная фабрика или «кустарь-одиночка» по пошиву обуви вряд ли будут привлекать отдельного спе
ц
Уменьшающаяся отдача от масштаба. Когда пропорциональное увеличение всех применяемых факторов в п раз вызывает рост объема производства меньше, чем в л раз, имеет место убывающая отдача от масштаба, т. е. Q2< nQv
Вернемся к данным таблицы 10.1 и рассмотрим ситуацию, когда фирма принимает решение о пропорциональном увеличении на 50% факторов, используемых в следующей комбинации: 2 ед. капитала и 6 ед. труда. При таком изменении масштаба производства фирма будет применять 3 ед. капитала и 9 ед. труда. Соответствующий данной комбинации факторов объем выпускаемой продукции составит 89 телевизоров. Видно, что рост объема производства по сравнению с первоначальным объемом (71 телевизор) составляет всего 25%, в то время как рост количества применяемых факторов - 50%. В данном случае фирма сталкивается с ситуацией убывающей отдачи от масштаба. Причинами уменьшающейся отдачи от масштаба чаще всего бывают растущие бюрократические, или иерархические, издержки внутреннего управления разросшейся фирмы. Распоряжения «сверху-вниз» проходят через все большее количество инстанций, административные расходы возрастают в большей степени, нежели выпуск готовой продукции. В целом это ведет к снижению эффективности производства.
Отдача от фактора показывает зависимость между объемом выпускаемой продукции и изменениями в количестве одного фактора при неизменном количестве другого. По мере наращивания одного переменного фактора начинает проявляться тенденция, известная как закон убывающей предельной производительности, или убывающей предельной доходности фактора производства, о чем и пойдет речь в следующем параграфе.
Теория предельной производительности факторов
Анализ теории предельной производительности факторов требует рассмотрения таких понятий, как общий, предельный и средний продукт переменного фактора производства. Общий продукт ^тр) - это суммарный объем выпуска продукции, полученный в рамках заданной производственной функции, и измеренный в физических единицах.
Понятие общего продукта позволяет выявить зависимость между объемом выпускаемой продукции и изменениями в количестве одного ресурса при неизменном количестве других.
(2)
Предположим, что фирма использует 2 ед. капитала.Тогда производственная функция будет представлена данными, содержащимися во второй строке таблицы 10.1. Как видно из ее данных, при использовании 2 ед. капитала общий объем производства будет зависеть от количества используемых единиц труда. Таким образом, общий продукт переменного фактора L может быть описан следующей производственной функцией:
О = f (L), при К - const.
Это уравнение выражает отношение между общим выпуском продукции и количеством фактора L, при условии, что количество фактора К постоянно и равно 2 ед. Графически данная производственная функция будет иметь следующий вид:
80
Количество продукции, (телевизоры, шт.), Q
Q = ft!), при К«2
60
40
20
6 8 10
Количество переменного фактора (число рабочих), L
Рис. 10.1. Производственная функция