ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 03.06.2020

Просмотров: 645

Скачиваний: 4

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

1 - генератор; 2 - топливный насос низкого давления; 3 - ручной топливоподкачивающий насос; 4 – топливный насос высокого давления; 5 - автоматическая муфта опережения впрыска топлива; 6 – ведущая полумуфта привода топливного насоса высокого давления; 7 – соединительный патрубок впускных воздухопроводов; 8 – фильтр тонкой очистки топлива; 9 – датчик тахометра; 10 – маховик; 11 – картер маховика; 12 – масляный картер; 13 – сливная пробка; 14 – крышка коренной опоры коленчатого вала; 15 – масляный насос; 16 – валик привода ведущих частей гидромуфты; 17 – шкив привода генератора; 18 - крыльчатка вентилятора

Рисунок 2 – Продольный разрез двигателя КамАЗ

На двигателях КамАЗ применена система питания топливом разделенного типа, состоящая из топливного насоса высокого давления 4, форсунок, фильтров грубой и тонкой очистки 8, топливоподкачивающего насоса низкого давления 2, топливопроводов низкого и высокого давлений, топливных баков, электромагнитного клапана и факельных свечей электрофакельного пускового устройства.

Система питания двигателя КамАЗ, представлена на рисунке 3.

1- топливопровод высокого давления; 2 – ручной топливоподкачивающий насос; 3 – топливоподкачивающий насос низкого давления; 4- топливопровод к фильтру тонкой очистки; 5- топливный насос высокого давления; 6-топливопровод к электромагнитному клапану; 7- электромагнитный клапан; 8- сливной дренажный топливопровод форсунок правого ряда; 9- факельная свеча; 10- дренажный топливопровод насоса высокого давления; 11- фильтр тонкой очистки топлива; 12- подводящий топливопровод к насосу высокого давления; 13- дренажный топливопровод фильтра тонкой очистки топлива; 14-сливной топливопровод; 15- топливный бак; 16- топливопровод к фильтру грубой очистки; 17- тройник; 18- фильтр грубой очистки топлива; 19- сливной дренажный топливопровод форсунок левого ряда; 20- форсунка; 21-подводящий топливопровод к насосу низкого давления

Рисунок 3 – Схема системы питания двигателя топливом

Топливо из бака 15 через фильтр 18 грубой очистки засасывается топливоподкачивающим насосом и через фильтр 11 тонкой очистки по топливопроводам 16, 21, 4, 12 низкого давления подается к топ­ливному насосу высокого давления; соглас­но порядку работы цилиндров двигателя на­сос распределяет топливо по трубопроводам 1 высокого давления к форсункам 20. Фор­сунки распыляют и впрыскивают топливо в камеры сгорания. Избыточное топливо, а вмес­те с ним и попавший в систему воздух через перепускной клапан топливного насоса высо­кого давления и клапан-жиклер фильтра тон­кой очистки по дренажным топливопрово­дам 10, 13 отводится в топливный бак. Топ­ливо, просочившееся через зазор между корпусом распылителя и иглой, сливается в бак через сливные топливопроводы 8, 14, 19.


3.3 Топливный насос высокого давления



Для точного дозирования топ­лива и подачи его в определенный момент под высоким давлением к форсункам применяется топливный насос высокого давления. Наиболь­шее распространение на автомобиль­ных дизелях получили многосекци­онные насосы с постоянным ходом плунжера и регулировкой конца по­дачи топлива.

По расположению секций насосы делятся на рядные и V-образные. Каждая секция топливного насоса обеспечивает работу одного из ци­линдров дизеля, поэтому число сек­ций топливного насоса определяется числом его цилиндров. В ниж­ней части корпуса 1 насоса на двух радиально-упорных шарико­подшипниках 20, уплотненных само­поджимными сальниками, установ­лен кулачковый вал 12 с шестер­ней 11.


Рисунок 4 – Топливный насос высокого давления

1 – корпус; 2 – винт ограничения мощности; 3 – рейка; 4 – зацепление с зубчатым венцом; 5 – перепускной клапан; 6 – плунжер; 7 – штуцер;

8 – пробка; 9 – корпус; 10 – тяга регулятора частоты вращения коленчатого вала; 11 – шестерня; 12 – кулачковый вал; 13 – привалочная плоскость насоса высокого давления; 14 – эксцентрик; 15 – ролики; 16 – втулка;

17 – выступ плунжера; 18 – роликовый толкатель; 19 – выступ кулачка;

20 - радиально-упорные шарикоподшипники; 21 – опорные пальцы;

22 - пружина; 23 – ведущая полумуфта; 24 – крышка; 25 – центробежные грузы; 26 – ведомая полумуфта; 27 – ось

На кулачковом валу имеются про­филированные кулачки 19 для каж­дой насосной секции и эксцентрик 14 для приведения в движение насоса низкого давления, который крепится к привалочной плоскости 13 насоса высокого давления.

В перегородке корпуса против каждого кулачка установлены роли­ковые толкатели 18. Оси роликов 15 своими концами входят в пазы корпуса насоса, предотвращая про­ворачивание толкателей.

Насосные секции установлены в верхней части корпуса и крепятся винтами. Основной частью каж­дой насосной секции является плун­жерная пара, состоящая из плун­жера 6 и гильзы.

При вращении кулачкового вала 12 насоса выступ кулачка 19 набе­гает на роликовый толкатель 18, который через болт воздействует на плунжер 6 и перемещает его вверх. Когда выступ кулачка выходит из-под ролика толкателя, пружина, упирающаяся в тарелки 28, возвращает плунжер в первоначаль­ное положение. Рейка 3 входит в зацепление с зубчатым венцом 4 поворотной втулки 16, надетой на гильзу, а в вертикальные пазы нижней части втулки входят вы­ступы 17 плунжера.

При перемещении рейки 3 вдоль ее оси втулка 16 поворачивается на гильзе и, действуя на выступы 17 плунжера, поворачивает его, в результате чего изменяется количест­во топлива, подаваемого к форсун­кам. Ход рейки ограничивается сто­порным винтом, входящим в ее продольный паз. Задний конец рейки соединен с тягой 10 регулятора частоты вращения коленчатого вала, установленного в корпусе 9.

Выступающий из насоса передний конец рейки закрыт запломбирован­ным колпачком, в который ввернут винт 2 ограничения мощности дви­гателя при обкатке автомобиля.


Для опережения впрыскивания топлива в цилиндры дизеля в зави­симости от частоты вращения его коленчатого вала в передней части насоса установлена центробежная муфта. Она состоит из ведущей 23 и ведомой 26 полумуфт. На ведомой полумуфте закреплены две оси 27 с установленными на них центробеж­ными грузами 25, в вырезах кото­рых размещены пружины 22, опи­рающиеся с одной стороны на оси 27, а с другой — на опорные пальцы 21 ведущей полумуфты 23. Меха­низм муфты в сборе закрыт крышкой 24, которая навернута на резьбу ведомой муфты.

Работа насоса высокого давления плунжерного типа, установленного на дизелях КамАЗ, состоит из наполнения надплунжерного пространства топ­ливом с частичным его перепуском, подачи топлива под высоким давле­нием к форсункам, отсечки и пере­пуска его в сливной топливопровод. При работе двигателя рейка топлив­ного насоса перемещается в соот­ветствии с изменением подачи топли­ва, при этом одновременно пово­рачиваются плунжеры всех сек­ций.

Чтобы изменить количество подаваемого топлива плунжер 6 поворачивается относительно гильзы при помощи рейки 3 насоса, которая связана с поворотной втул­кой 16. Управление подачей топлива осу­ществляется из кабины водителя педалью, воздействующей с помощью тяг и рычага и тяг на всережимный регулятор частоты вращения коленчатого вала, расположенный в развале топливного насоса. На крышке регулятора закреплен топливный насос низкого давления и насос ручной подкачки топлива.

Рисунок 5 – Схема работы секции насоса высокого давления

а – впуск (всасывание); б – начало подачи; в – конец подачи

1 – плунжер; 2 – продольный паз; 3 – выпускное отверстие; 4 – сливной канал; 5 – пружина; 6 – нагнетательный клапан; 7 – разгрузочный поясок; 8 – надплунжерное пространство; 9 – впускное отверстие; 10 - подводящий канал; 11 – корпус; 12 – внутреннее пространство гильзы; 13 - винтовая кромка

В виду того что все секции ра­ботают одинаково, рассмотрим ра­боту насоса на примере одной из секций, схема работы которой изображена на рисунке 5. При движении плунжера 1 вниз, как показано на рисунке 5, а, внутреннее пространст­во гильзы 12 наполняется топливом, и одновременно оно подается насо­сом низкого давления в подводящий канал 10 корпуса 11 насоса. При этом открывается впускное отверстие 9, и топливо поступает в надплунжерное пространство 8. Затем под действием кулачка плунжер начи­нает подниматься вверх (рисунок 5, б), перепуская топливо обратно в под­водящий канал 10 до тех пор, пока верхняя кромка плунжера не пере­кроет впускное отверстие 9 гильзы. После перекрытия этого отверстия давление топлива резко возрастает и при 1,2—1,8 МПа топливо, пре­одолевая усилие пружины 5, подни­мает нагнетательный клапан 6 и по­ступает в топливопровод.

Дальнейшее перемещение плунже­ра вверх вызывает повышение давле­ния до 16,5 МПа, превышающее давление, создаваемое пружиной форсунки, в результате чего игла форсунки приподнимается и проис­ходит впрыскивание топлива в каме­ру сгорания. Подача топлива про­должается до тех пор, пока винто­вая кромка 13 (рисунок 5, в) плунже­ра не откроет выпускное отверстие 3 в гильзе, в результате чего давление над плунжером резко па­дает, нагнетательный клапан 6 под действием пружины закрывается и надплунжерное пространство разъе­диняется с топливопроводом высо­кого давления. При дальнейшем дви­жении плунжера вверх топливо пере­текает в сливной канал 4 через продольный паз 2 и винтовую кромку 13 плунжера.


Перемещение плунжера во втулке с момента закрытия впускного от­верстия до момента открытия вы­пускного отверстия называется активным ходом плунжера, который в основном и определяет количество подаваемого топлива за цикл работы топливной секции.

Изменение количества топлива, подаваемого секцией за один цикл, происходит в результате поворота плунжера 1 зубчатой рейкой. При различных углах поворота плунжера благодаря винтовой кромке смеща­ются моменты открытия выпускного отверстия. При этом чем позднее открывается выпускное отверстие, тем большее количество топлива мо­жет быть подано к форсункам.

1 – плунжер; 2 – выпускное отверстие; 3 – продольный паз; 4 – входное отверстие; 5 – винтовая кромка

Рисунок 6 – Схема изменения подачи топлива

На рисунке 6 показаны следующие положения винтовой кромки плунже­ра за цикл работы топливной секции:

положение А — максимальная по­дача топлива и наибольший актив­ный ход плунжера 1. В этом случае расстояние h от винтовой кромки 5 плунжера до выпускного отверстия 2 будет наибольшим;

положение Б — промежуточная подача, так как при повороте плунжера по часовой стрелке рассто­яние h уменьшается и выпускное отверстие открывается раньше;

положение В — нулевая подача топлива. Плунжер повернут так, что его продольный паз 3 расположен против выпускного отверстия 2 (h = 0), в результате чего при пере­мещении плунжера вверх топливо вытесняется в сливной канал, пода­ча топлива прекращается и двига­тель останавливается.


3.4 Регулятор частоты вращения коленчатого вала

Нормальная работа дизельного двигателя происходит в определенных пределах частоты вращения коленчатого вала. При слишком малой частоте вращения двигатель работает неустойчиво и может легко заглохнуть, при слишком высокой двигатель может пойти "вразнос", и тогда появится опасность его разрушения.

Для каждого дизельного двигателя существует своя оптимальная частота вращения коленчатого вала, при которой он работает с наибольшей экономичностью и минимальным дымлением. Чтобы поддерживать эту частоту вращения при изменяющихся нагрузках двигателя во время движения автомобиля, регулятор должен обеспечивать соответствующую подачу топлива, воздействуя на топливный насос высокого давления.

На современных автомобильных дизельных двигателях устанавливают в большинстве случаев всережимные регуляторы центробежного типа.


Основным элементом регулятора являются грузы, закрепленные на державке, приводимой в действие шестеренчатой передачей от кулачкового вала насоса. При вращении державки грузы под действием центробежных сил расходятся и давят на муфту, которая через систему рычагов воздействует на зубчатые рейки поворота плунжеров нагнетательных секций. Работает регулятор следующим образом. При нажатии на рычаг управления регулятором через пружину и промежуточный рычаг передается усилие на рейки поворота плунжеров, которые пе­ремещают их в сторону увеличения подачи. Частота вращения коленчатого вала двига­теля возрастает до тех пор, пока центро­бежные силы грузов не уравновесят силу натяжения пружины и не установится за­данный скоростной режим.

Каждому положению рычага управления соответ­ствует определенная частота вращения ко­ленчатого вала. Если нагрузка на двига­тель при заданном положении рычага уп­равления будет падать, то частота враще­ния коленчатого вала увеличивается, и воз­растают центробежные силы грузов регуля­тора. Они становятся больше усилия натя­жения пружины и перемещают рейки в сто­рону уменьшения подачи — в результате восстанавливается частота вращения вала, заданная рычагом управления. При увеличении нагрузки частота вра­щения коленчатого вала двигателя и центробежные силы грузов падают, что вызывает под действием относительно возросшего усилия пружины перемещение реек в сто­рону увеличения подачи. Таким образом, поддерживается заданный режим скорости при изменении нагрузки. Чтобы изменить частоту вращения вала двигателя, необходимо нажать на педаль управления подачей топлива, через систему тяг и рычагов.

Так как целью дипломного проекта является модернизация системы управления топливоподачей дизельного двигателя КамАЗ, то установим на двигатель электрогидровлический регулятор, воздействующий на рейки ТНВД.


3.5 Описание конструкции электрогидравлического усилителя


Схема электрогидроусилителя – преобразователя типа "сопло – магнитожидкостная заслонка" представлена на рисунке 7

1 – заслонка; 2 – золотник; 3, 4 – катушки; 5 – сопло; 6,7 – дроссели;

8,9 – синхронизирующие пружины; 10 – регулировочный винт

Рисунок 7 – Конструкция электрогидравлического усилителя мощности

типа «сопло–магнитожидкостная заслонка»

Гидроусислитель – преобразователь типа "сопло – магнитожидкостная заслонка" вместе с управляющим золотником составляет гидравлическое исполнительное устройство с дроссельным регулированием.

Золотник представляет гидравлическое исполнительное устройство с дроссельным регулированием второго каскада усиления. Входными переменными второго каскада будут смещение управляющего золотника, а выходными – расход через дросселирующие выходные щели золотника.