Файл: Концпект лекций химия нефти и газа.doc

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 11.01.2024

Просмотров: 564

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
непосредственно сконденсированных с ароматическими ядрами.

Второй этап можно характеризовать как этап развития физических представлений о строении асфальтенов и анализа причин, обусловливающих склонность асфальтенов к ассоциации. Действительно, объяснение зависимости молекулярной массы от условий определения (см. табл. 2.5), а также ее прямолинейной зависимости от размеров частиц асфальтенов (рис. 1.5) стало возможно в рамках качественно новых представлений о строе­нии асфальтенов.

В 1961г. Т. Йен предложил так называемую пачечную модель строения асфальтенов типа "plate to plate". В основу модели была положена не необходимость ее соответствия вычисленным структурным параметрам о составе асфальтенов, а принципиаль ная возможность плоскопараллельной ориентации полиароматических фрагментов разных молекул. Их объединение в результате межмолекулярных (π - π, донорно-акцепторных и др.) взаимодействий происходит с образованием слоистых стэкинг-структур (термин "стэкинг" принят в молекулярной биологии для обозначения стопкообразного расположения молекул одна над другой).



Рис. 2.5. Корреляция между размером частиц асфальтенов (D) и их молекулярной массой (М)

В соответствии с моделью Йена на основе данных рентгеновской дифракции асфальтены имеют кристаллическую структуру и представляют собой стэкинг-структуры диа­метром 0,9-1,7 нм из 4-5 слоев, отстоящих друг от друга на 0,36 нм. Размер стэкинг-структур по нормали к плоскости ароматических пластин составляет 1,6-2,0 нм (рис. 2.6). Прямолинейными отрезками показаны плоские полиароматические, а ломаными - насыщенные фрагменты молекул. Полиароматические фрагменты представлены сравнительно некрупными, чаще всего не более чем тетрациклическими, ядрами. Из алифатических фрагментов наиболее распространенными являются короткие алкильные группы С15, в первую очередь метильные, но присутствуют и линейные разветвленные алканы, содержащие 10 углеродных атомов и более. Есть в молекулах CAB и полициклические насыщенные структуры с 1-5 конденсированными циклами, преимущественно бицикланы.

В рамках модели Йена отмеченная выше зависимость молекулярной массы асфальтенов от условий выделения и природы растворителя легко объясняется ассоциацией, предполагающей несколько уровней структурной организации асфальтенов: молекулярно-диспергированное состояние (I), в котором асфальтены находятся в виде отдельных слоев; коллоидное сос
тояние (II), являющееся результатом образования стэкинг-структур с характерными размерами; дисперсное кинетически устойчивое состояние (III), возникающее при агрегировании стэкинг-структур, и дисперсное кинетически неустойчивое состояние (IV), сопровождающееся выделением осадка.

Рис. 2.6. Модель строения асфальтенов по Йену

Модели пачечной структуры строения асфальтенов придерживаются многие современные исследователи. Унгер Ф.Г. высказал оригинальную точку зрения на процесс возникновения и существования CAB в нефти. Нефти и нефтяные системы, содержащие CAB, по его мнению, - термодинамически лабильные парамагнитные ассоциированные растворы. Ядра ассоциатов таких растворов образованы асфальтенами, в которых локализованы стабильные свободные радикалы, а окружающие ядра сольватные слои состоят из диамагнитных молекул смол. Часть диамагнитных молекул смол способна переходить в возбужденное триплетное состояние и подвергаться гемолизу. Поэтому смолы являются потенциальным источником асфальтенов, что объясняет отмеченную еще Гурвичем Л.Г. легкость превращения смол в асфальтены.

Итак, новизна изложенных представлений связана с утверждением особой роли обменных взаимодействий для объяснения природы CAB. В отличие от пачечной модели развивается идея о центрально-симметричном устройстве частицы CAB. Впервые она была постулирована Д. Пфайфером и Р. Саалем, предложившими статическую модель строения структурной единицы асфальтенов. Согласно ей ядро структурной единицы образовано высокомолекулярными полициклическими углеводоро­дами и окружено компонентами с постепенно снижающейся степенью ароматичности. Нейман Г. подчеркивал, что энергетически выгодно обращение полярных групп внутрь структурной единицы, а углеводородных радикалов - наружу, что находится в согласии с правилом уравнивания полярности по Ребиндеру.

Порфирины являются типичными примерами нативных нефтяных комплексных соединений. Порфирины с ванадием в качестве координационного центра (в форме ванадила) или никелем (см. 11). Ванадилпорфирины нефти - в основном гомологи двух рядов: алкилзамещенных порфиринов с различным суммарным числом ато

мов углерода в боковых заместителях порфинового цикла и порфиринов с дополнительным циклопентеновым кольцом. Металлпорфириновые комплексы присутствуют в природных битумах до 1 мг/100 г, а в высоковязких нефтях - до 20 мг/100 г нефти. При исследовании характера распределения металлпорфириновых комплексов между составными частями НДС в работе методами экстракции и гель-хроматографии установлено, что 40 % ванадилпорфиринов сосредоточено в дисперсных частицах (примерно поровну в составе ядра и сольватного слоя), а оставшаяся их часть и никель-порфирины содержатся в дисперсионной среде.



Ванадилпорфирины в составе асфальтенов вносят значительный вклад в поверхностную активность нефтей, при этом собственная поверхностная активность асфальтенов невелика. Так, исследование нефтей Башкирии показало, что поверх­ностное натяжение нефтей на границе с водой сильно коррелирует с содержанием в них ванадилпорфиринов, в то время как коэффициент корреляции с содержанием в них асфальтенов относительно невысок (рис. 2.7).

В меньшей степени изучено влияние металлпорфиринов на дисперсное строение нефти и условия протекания фазовых переходов в нефтяных системах. Есть данные об их отрицательном влиянии наряду с другими гетероатомными компонентами на каталитические процессы нефтепереработки. Помимо этого, они должны сильно влиять на кинетику и механизм фазовых переходов в НДС.


Рис. 2.7. Изотермы межфазного натяжения а на границе с водой:

а - бензольные растворы асфальтенов: 1- асфальтены с порфиринами; 2-5 - асфальтены по мере удаления порфиринов после одной, пяти, семи, тринадцати экстракций соответственно; б - нефтей Башкирии

2.3. Микроэлементы
Первоначально исследованием микроэлементного состава нефтей занимались геохимики с целью поиска доказательств различных теорий происхождения нефти и изучения закономерностей миграции нефтяных месторождений. Ими накоплен обширный массив экспериментальных данных о количественном и качественном распределении элементов в нефтях, к сожа
лению, с трудом потдающихся систематизации. Позже интерес к подобным исследованиям проявили химики-технологи, по­скольку было установлено неблагоприятное влияние металлов на процессы нефтепереработки и эксплуатационные свойства нефтепродуктов, а извлечение некоторых элементов, в частности ванадия, из нефти стало промышленно важным. Так, содержание ванадия и никеля в ряде образцов битумов восточной части Прикаспийской впадины и природных высоковязких нефтей достигает 50 г/т, при этом преобладает ванадий. Современный качественно новый уровень научных исследований в области изучения микроэлементного состава и связи с компонентами нефти обусловлен выявлением особой роли металлпорфиринов в строении CAB, в которых металл выступает в качестве их координационного центра.

В настоящее время установлено, что в нефтях разного происхождения присутствует более 60 элементов, из которых около 30 относятся к металлам. В нефти присутствуют - железо, магний, алюминий, медь, олово, натрий, кобальт, хром, германий, ванадий, никель, ртуть, золото и другие. Однако, содержание их менее 1 %. Среди отдельных металлов, содержание которых в нефтях превышает 10-5 %, доминируют: V – 10-5-10-2 %; Ni – 10-4-10-3 %; Fe – 10-4-10-3 %; Zn – 10-5 –10-3 %; Hg - около 10-5 %; В – 10-3-0,3 %; Na, K, Ca, Mg – 10-3-10-4 %. Суммарное содержание в нефтях металлов в среднем колеблется от 0,01 до 0,0 4 % (масс.), а в выделенных из них CAB иногда может достигать десятых долей процента.

При изучении распределения тяжелых металлов (ванадия и никеля) по хроматографическим фракциям гудрона западно-сибирской нефти было найдено, что основная масса металлсодержащих соединений сосредоточена в смолах и асфальтенах, а углеводородные фракции содержат до 1-3 ррm металлов (табл. 2.6). Содержание микроэлементов в асфальтенах выше, чем в смолах. Поскольку содержание смол в нефтях и остаточных фракциях значительно больше, чем асфальтенов,
то основная масса металлов все же сосредоточена в смолах.

При термолитическом воздействии на нефтяные системы, например, в процессе перегонки, происходят изменения структурных и физических характеристик смол, а также их микроэлементного состава. Основная часть атомов металлов (кроме ванадия) связана в составе смол с серо- и кислородсодержащими функциональными группами (карбоксильными, сульфоксидными и др.), размещающимися в термически мало устойчивых, главным образом неароматических фрагментах молекул.

Таблица 2.6.

Распределение металла по хроматографическим фракциям гудрона

Фракция Содержание , ррт

ванадия никеля

Гудрон 120 46

Фракции:

парафинонафтеновые 0,10 0,10

легкие ароматические 0,13 0,07

средние ароматические 0,12 0,04

тяжелые ароматические 2,6 1,4

смолы I 80 88,4

смолы II 370 57

асфальтены 963 480

Термолитическое разрушение таких фрагментов ведет к удалению соответствующей части атомов металлов из состава смол и повышению доли комплексов металлов с менее полярными и более ароматичными лигандами.

Металлсодержащие соединения нефти и нефтяных систем по своей химической природе - это соли металлов с веществами кислотного характера, элементоорганические соединения, полилигандные комплексы или π-комплексы с ароматическими или гетероорганическими соединениями.

В виде солей с органическими кислотами, фенолами, тиолами в нефти, по-видимому, находится преобладающая часть щелочных и щелочноземельных металлов, что приводит к их легкому гидролизу и удалению из нефти в процессе водной промывки.

Присутствие в нефти металлоорганических соединений со связью углерод - металл не доказано, хотя вероятность их обнаружения достаточно высока.

Наиболее распространенный тип металлсодержащих соединений нефти относится к полилигандным комплексам, где в качестве лиганда могут быть любые молекулы из широкой гаммы гетероорганических соединений. Такие комплексы образу­ются при координации атома металлов Fe, Co, V, Ni, Cr, Zn и др. с атомами N, S, О гетероорганических соединений. Прочность комплексов определяется природой гетероатома и метал