ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 04.04.2024
Просмотров: 406
Скачиваний: 3
Строение внутрикомплексной соли кальция можно представить следующим образом:
O=C─O |
|
|
|
|
|
|
|
O─C=O |
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
H2C |
|
|
|
|
|
|
|
|
CH2 |
|
||
|
|
|
Ca |
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
N |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
N |
|
|
|
|
|
|
NaOOCH2C |
|
|
|
CH2─CH2 |
|
|
|
CH2COONa |
|
|||
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Образующиеся при этом соединения отличаются достаточно малыми величинами Kн (например, для Ca2+ – 10 –10 , Zn2+ – 10 –16 , Fe3+ – 10 –25 ).
Индикаторы комплексонометрии также образуют с ионами металлов внутрикомплексные соли, которые по условиям титрования должны быть менее устойчивы по сравнению с комплексонатами ионов данного металла.
Соотношение устойчивости
Ме γ / Me Ind ≥ 104.
В качестве индикаторов в комплексонометрии применяют красители: мурексид, кислотный хром тёмно-синий, кислотный хромоген чёрный специальный (эрихром чёрный Т) и др. Последние два в щелочной среде имеют синюю окраску.
Ионы кальция, магния и ряда других металлов образуют с индикаторами внутрикомплексные соединения, окрашенные в вишнёво-красный цвет. В точке эквивалентности вишнёво-красная окраска раствора переходит в синюю.
4.1. РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ
При решении задач использовать табл. 4.1.
4.1. Константы нестойкости некоторых комплексных ионов
Комплексный ион |
Формула расчёта кнест |
кнест |
|||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[Аg(NН3)2]+ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 · 10–8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[Cd(NН3)4]2+ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 · 10–8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[Co(NН3)6]2+ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 · 10–6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[Cu(NН3)4]2+ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 · 10–14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Продолжение табл. 4.1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Комплексный ион |
Формула расчёта кнест |
|
кнест |
|||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[Ni(NН3)6]2+ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 · 10–9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[Zn(NН3)4]2+ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 · 10–10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[Аg(CN)2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 · 10–21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[Cd(CN)4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 · 10–27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[Fe(CN)6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 · 10–27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[Fe(CN)6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 · 10–44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[Fe(SCN) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 · 10–3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[Ni(CN)4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 · 10–16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[Zn(CN)4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 · 10–17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[CdCl4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 · 10–3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[CdI4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 · 10–7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Пример 4.1. Определите массовую долю магния в алюминиевом сплаве, если после растворения сплава массой 0,5000 г и удаления мешающих элементов объём раствора довели до 100 см3. На титрование 20,00 см3 этого раствора потребовалось 20,06 см3 0,01 М раствора ЭДТА.
Решение. По формуле (2.3) табл. 2.2 определяем массу Mg:
m(Mg) = 24 × 0,01×12,06 × 100 = 0,0145 г, 1000 20
тогда по формуле (2.17) табл. 2.2 имеем
42
w(Mg) = 0,0145 ×100 = 2,9%. 0,5000
Пример 4.2. Определите массу ртути в растворе, если после прибавления к раствору 25,00 см3 0,01 М раствора ЭДТА на титрование избытка израсходовали 10,50 см3 0,01 М MgSO4.
Решение. При обратном титровании массу определяемого вещества вычисляем по формуле (2.12) табл. 2.2:
m(Hg) = (25,00 × 0,01 -10,50 × 0,01)× 200,59 = 0,0291 г, 1000
где 200,59 г/моль – молярная масса ртути.
Пример 4.3. Вычислите жёсткость воды, если в 500 дм3 её содержит-
ся Ca(HCO3)2 массой 202,5 г.
Решение. В 1 дм3 воды содержится 202,5/500 = 0,405 г Ca(HCO3)2,
что составляет 0,405/81 = 0,005 эквивалентных масс или 5 мэкв/дм3
(Мэ (Ca(HCO3)2) = 81 г/моль).
Следовательно, жёсткость воды равна 5 мэкв.
При решении данной задачи можно также применить формулу
Ж = |
m |
(4.1) |
, |
M эV
где m – масса вещества, обусловливающего жёсткость (Ж) воды или применяемого для её устранения, мг; Мэ – эквивалентная масса этого вещества; V – объём воды, дм3.
202,5 |
|
мэкв /дм3. |
||
Ж = |
|
|
= 5 |
|
|
× 500 |
|||
81 |
|
|
Пример 4.4. Константа нестойкости иона [Ag(CN)2]– равна 1 · 10–21 . Вычислите концентрацию ионов серебра в 0,05 М растворе
K[Ag(CN)2], содержащем, кроме того, 0,01 моль/дм3 KCN.
Решение. Вторичная диссоциация комплексного иона протекает по уравнению
[Ag(CN)2]– ↔ Ag+ + 2CN– .
В присутствии избытка ионов CN– , создаваемого в результате диссоциации KCN (которую можно считать полной), это равновесие смещено влево настолько, что количеством ионов CN– , образующихся при вторичной диссоциации, можно пренебречь. Тогда [CN– ] = 0,01 моль/дм3. По той же причине равновесная концентрация ионов [Ag(CN)2]– может быть приравнена к общей концентрации комплексной соли (0,05 моль/дм3).
43
По условию задачи |
[Ag+ ][СN − ]2 |
|
|
|
|
|
|
|||||
|
|
|
|
|
|
–21 |
|
|
||||
|
|
Kн = |
[[Ag(CN)− ]] |
= 1 · 10 |
|
. |
|
|||||
|
|
|
|
2 |
|
|
|
|
|
|
|
|
Тогда |
[Ag+ (СN)2 ]− |
|
|
|
|
|
|
|
|
|
||
1×10−21 |
|
10 |
−21 |
× 0,05 |
|
|
|
|
||||
[Ag+ ]= |
|
|
|
= |
|
|
= = 5 ·10–19 |
моль/дм3. |
||||
|
[CN− ]2 |
|
|
|
|
|
||||||
|
|
|
(0,01)2 |
|
|
|
|
4.2.ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ
226.Вычислите нормальность и титр раствора трилона Б, если на титрование 25,00 см3 его израсходовано 24,45 см3 0,11 н. раствора ZnSO4.
Ответ: 0,1076 моль/дм3; 0,02002 г/см3.
227. Какую навеску цинковой руды, содержащей около 15% Zn, следует взять для анализа, чтобы после растворения и отделения мешающих примесей на титрование Zn2+-ионов потребовалось 20,00 см3 0,1 М раствора трилона Б?
Ответ: 0,8700 г.
228. Сколько граммов металлического цинка следует растворить в 100,0 см3 серной кислоты, чтобы на титрование 20,00 см3 полученного раствора пошло 20,00 см3 0,2 М раствора трилона Б?
Ответ: 1,3000 г.
229. На титрование 20,00 см3 раствора NiCl2 израсходовали 21,22 см3 0,02063 М раствора трилона Б. Определите содержание соли никеля (г/дм3) в растворе.
Ответ: 2,848 г/дм3.
230. Определите содержание MnCl2 (г/дм3), если на титрование 20,00 см3 раствора израсходовали 17,26 см3 0,06905 М раствора трилона Б.
Ответ: 7,5 г/дм3.
231. Определите содержание индифферентных примесей в ацетате свинца (ω, %), если на титрование раствора, полученного из навески массой 0,1000 г его, израсходовали 5,84 см3 0,05 М раствора трилона Б.
Ответ: 5,1%.
232. Определите содержание индифферентных примесей (ω, %) в MgSO4 · 7H2O, если после растворения навески массой 0,1000 г на титрование Mg2+-ионов израсходовали 7,32 см3 0,05 М раствора трилона Б.
Ответ: 9,96%.
44
233. После соответствующей обработки стекло, содержащее Fe(II) массой 3,0340 г перевели в раствор и объём раствора довели водой до 100,0 см3. 20,00 см3 раствора оттитровали 7,06 см3 0,005 М раствора трилона Б. Определите содержание Fe в стекле (ω, %).
Ответ: 0,326%.
234. Определите содержание Mn (ω, %) в медном сплаве, если после растворения пробы массой 0,2062 г и маскировки мешающих элементов на титрование Mn2+-ионов пошло 15,42 см3 0,05 М раствора трилона Б.
Ответ: 20, 56%.
235. Навеску соли магния массой 0,2000 г растворили в мерной колбе вместимостью 100 см3. На титрование 20,00 см3 раствора израсходовали 20,25 см3 0,025 М раствора трилона Б. Вычислите содержание магния в соли (ω, %).
Ответ: 30,38%.
236. Вычислите содержание CaCO3 и MgCO3 (ω, %) в известняке, если после растворения пробы массой 1,0000 г и соответствующей обработки объём раствора довели водой до 100,0 см3 и на титрование 20,00 см3 его для определения суммы Са и Mg затратили 19,25 см3 0,0514 М раствора трилона Б, а на титрование Mg израсходовали 6,26 см3 того же раствора трилона Б.
Ответ: 33,38%; 13,51%.
237. Сколько ртути (II) содержится в 50,00 см3 раствора, если после прибавления 25,00 см3 0,01 М раствора трилона Б избыток его оттитровывается 10,50 см3 0,01 М раствора MgSO4?
Ответ: 29,15 мг.
238. Вычислите концентрацию Ag+-ионов в 0,1 М растворе
[Ag(NH3)2]Cl, содержащем 0,5 моль/дм3 NH3. Kн([Ag(NH3)2]+) = 9 ·10–8 . Ответ: 2,36 · 10–8 моль/дм3.
239. Вычислите массу осадка, образующегося при взаимодействии трёх молей CoCl2 · 5 NH3 с избытком раствора AgNO3.
Ответ: 860,21 г.
240. Какой объём раствора NH3 (ω = 10,0%, ρ = 1,00 г/см3) потребуется для полного растворения 0,2 моль AgCl.
Ответ: 68,00 см3.
241. При окислении раствора H2O2 с массовой долей 3% в щелочной среде раствором красной кровяной соли (K3[Fe(CN)6]) был получен кислород объёмом 560,00 см3 (н.у.). Определите массу израсходованных веществ: а) H2O2; б) K3[Fe(CN)6].
Ответ: а) 28,33 г; б) 16,45 г.
45