Файл: Ersoy O.K. Diffraction, Fourier optics, and imaging (Wiley, 2006)(ISBN 0471238163)(427s) PEo .pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 28.06.2024
Просмотров: 891
Скачиваний: 0
PROPERTIES OF THE FOURIER TRANSFORM |
13 |
|||||
Property 4: Modulation |
|
|
|
|
|
|
If gðx; yÞ ¼ u1ðx; yÞu2ðx; yÞ, then |
|
|
|
|
|
|
Gð fx; fyÞ ¼ F1ð fx; fyÞ F2ð fx; fyÞ |
ð2:5-7Þ |
|||||
Property 5: Separable function |
|
|
|
|
|
|
If gðx; yÞ ¼ u1ðxÞu2ðyÞ, then |
|
|
|
|
|
|
Gð fx; fyÞ ¼ U1ð fxÞU2ð fyÞ |
ð2:5-8Þ |
|||||
Property 6: Space shift |
|
|
|
|
|
|
If gðx; yÞ ¼ uðx x0; y y0Þ, then |
|
|
|
|
|
|
Gð fx; fyÞ ¼ e j2pð fxx0þfyy0Þ Uð fx; fyÞ |
ð2:5-9Þ |
|||||
Property 7: Frequency shift |
|
|
|
|
|
|
If gðx; yÞ ¼ e j2pð fx0xþfy0yÞ uðx; yÞ, then |
|
|||||
Gð fx; fyÞ ¼ Uð fx fx 0; f2 fy 0Þ |
ð2:5-10Þ |
|||||
Property 8: Differentiation in space domain |
|
|||||
If gðx; yÞ ¼ @k=@xk @‘=@y‘ uðx; yÞ, then |
|
|||||
Gð fx; fyÞ ¼ ð2p jfxÞkð2p jfyÞ‘Uð fx; fyÞ |
ð2:5-11Þ |
|||||
Property 9: Differentiation in frequency domain |
|
|||||
If gðx; yÞ ¼ ð j2pxÞkð j2pyÞ‘uðx; yÞ, then |
|
|||||
|
|
@k @‘ |
|
|||
Gð fx; fyÞ ¼ |
|
|
|
Uð fx; fyÞ |
ð2:5-12Þ |
|
@fxk |
@fy‘ |
|||||
Property 10: Parseval’s theorem |
|
|
|
|
|
|
1 |
1 |
ð Uð fx; fyÞG ð fx; fyÞdfxdfy |
|
|||
ð ð uðx; yÞg ðx; yÞdxdy ¼ |
ð |
ð2:5-13Þ |
||||
1 |
1 |
|
|
|
|
|
Property 11: Real uðx; yÞ |
|
|
|
|
|
|
Uð fx; fyÞ ¼ U ð fx; fyÞ |
ð2:5-14Þ |
Property 12: Real and even uðx; yÞ
Uð fx; fyÞ is real and even
14 |
|
|
|
|
|
|
LINEAR SYSTEMS AND TRANSFORMS |
||
Property 13: Real and odd uðx; yÞ |
|
|
|
|
|
||||
|
|
|
Uð fx; fyÞ is imaginary and odd |
|
|||||
Property 14: Laplacian in the space domain |
|
||||||||
@2 |
|
@2 |
|
|
|
|
|
|
|
If gðx; yÞ ¼ |
|
þ |
|
uðx; yÞ, then |
|
|
|
||
@x2 |
@y2 |
|
|
|
|||||
|
|
|
Gð fx; fyÞ ¼ 4p2ð fx2 þ fy2ÞUð fx; fyÞ |
ð2:5-15Þ |
|||||
Property 15: Laplacian in the frequency domain |
|
||||||||
If gðx; yÞ ¼ 4p2ðx2 þ y2Þuðx; yÞ, then |
|
|
|
||||||
|
|
|
Gð fx; fyÞ ¼ |
@2 |
þ |
@2 |
!Uð fx; fyÞ |
ð2:5-16Þ |
|
|
|
|
@fx2 |
@fy2 |
|||||
Property 16: Square of signal |
|
|
|
|
|
||||
If gðx; yÞ ¼ juðx; yÞj2, then |
|
|
|
|
|
||||
|
|
|
Gð fx; fyÞ ¼ Uð fx; fyÞ U ð fx; fyÞ |
ð2:5-17Þ |
|||||
Property 17: Square of spectrum |
|
|
|
|
|
||||
If gðx; yÞ ¼ uðx; yÞ u ðx; yÞ, then |
|
|
|
|
|
||||
|
|
|
|
Gð fx; fyÞ ¼ jUð fx; fyÞj2 |
ð2:5-18Þ |
||||
Property 18: Rotation of axes |
|
|
|
|
|
||||
If gðx; yÞ ¼ uð x; yÞ, then |
|
|
|
|
|
||||
|
|
|
|
Gð fx; fyÞ ¼ Uð fx; fyÞ |
ð2:5-19Þ |
The important properties of the FT are summarized in Table 2-1.
EXAMPLE 2.2 Find the 1-D FT of
1ð
gðxÞ ¼ |
uðx; yÞdy |
1
as a function of the FT of uðx; yÞ.
PROPERTIES OF THE FOURIER TRANSFORM |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
||||||||||
Table 2.1. Properties of the Fourier transform (a, b, |
fx0 |
and fy0 |
are real nonzero |
||||||||||||||||||||||||
constants; k and l are nonnegative integers). |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
Property |
|
|
gðx; yÞ |
|
|
|
|
|
|
|
|
|
|
|
|
|
Gðfx; fyÞ |
|
|||||||||
Linearity |
au1ðx; yÞ þ bu2ðx; yÞ |
|
aU1ð fx; fyÞ þ bU2ð fx; fyÞ |
||||||||||||||||||||||||
Convolution |
u1ðx; yÞ u2ðx; yÞ |
|
|
U1ð fx; fyÞU2ð fx; fyÞ |
|||||||||||||||||||||||
Correlation |
u1ðx; yÞ u2ðx; yÞ |
|
|
U1ð fx; fyÞU2 ð fx; fyÞ |
|||||||||||||||||||||||
Modulation |
|
u1ðx; yÞu2ðx; yÞ |
|
|
U1ð fx; fyÞ U2ð fx; fyÞ |
||||||||||||||||||||||
Separable function |
|
|
u1ðxÞu2ðyÞ |
|
|
|
|
|
|
U1ð fxÞU2ð fyÞ |
|
||||||||||||||||
Space shift |
uðx |
|
x0; y y0Þ |
|
e |
j2pð fxx0þfy y0 Þ Uð fx; fyÞ |
|||||||||||||||||||||
Frequency shift |
gðx; yÞ ¼ e j2pð fx0xþfy0yÞ uðx; yÞ |
Gð fx; fyÞ ¼ Uð fx |
fx0; f2 |
fy0Þ |
|||||||||||||||||||||||
|
|
|
@k |
|
@‘ |
|
|
|
ð2pjfxÞkð2pjfyÞ‘Uð fx; fyÞ |
||||||||||||||||||
Differentiation in |
|
|
|
|
|
|
|
uðx; yÞ |
|
||||||||||||||||||
|
|
@xk |
@y‘ |
|
|||||||||||||||||||||||
space domain |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@k |
|
|
@‘ |
|
|
|
|
||||
|
ð j2pxÞkð j2pyÞ‘uðx; yÞ |
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
Differentiation in |
|
|
|
|
|
|
|
|
|
Uð fx; fyÞ |
|
||||||||||||||||
|
|
|
|
@f k |
@f ‘ |
|
|||||||||||||||||||||
frequency domain |
|
@2 |
|
|
@2 |
|
|
|
|
|
|
|
|
x |
y |
|
|
|
|
||||||||
Laplacian in the space |
|
|
|
|
|
|
|
|
|
2 |
|
2 |
|
|
2 |
|
|
|
|||||||||
@x2 þ @y2 |
uðx; yÞ |
|
|
4p ð fx |
þ fy ÞUð fx; fyÞ |
||||||||||||||||||||||
domain |
|
|
|||||||||||||||||||||||||
Laplacian in |
4p2ðx2 þ y2Þuðx; yÞ |
|
|
@2 |
þ |
@2 |
!Uð fx; fyÞ |
||||||||||||||||||||
|
|
|
@fx2 |
@fy2 |
|||||||||||||||||||||||
the frequency domain |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Square of signal |
|
|
|
j |
ð |
|
Þj |
2 |
|
|
U |
ð |
fx |
; fy |
Þ |
U |
ð |
fx; fy |
Þ |
||||||||
|
|
|
|
u x; y |
|
|
|
|
|
|
|
|
|
||||||||||||||
Square of spectrum |
|
uðx; yÞ u ðx; yÞ |
|
|
|
|
|
|
|
jUð fx; fyÞj2 |
|
||||||||||||||||
Rotation of axes |
1 |
uð x; yÞ |
1 |
|
|
|
|
|
Uð fx; fyÞ |
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
ð Uð fx; fyÞG ð fx; fyÞdfxdfy |
||||||||||||||||||
Parseval’s theorem |
ð ð uðx; yÞg ðx; yÞdxdy ¼ |
ð |
|||||||||||||||||||||||||
|
1 |
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
Real uðx; yÞ |
|
|
|
|
|
|
|
|
|
Uð fx; fyÞ ¼ U ð fx; |
|
|
fyÞ |
|
|
|
|
|
|
|
|
|
|||||
Real and even uðx; yÞ |
|
|
|
|
|
|
|
|
|
Uð fx; fyÞis real and even |
|
|
|
|
|
|
|
|
|
||||||||
Real and odd uðx; yÞ |
|
|
|
|
|
|
|
|
Uð fx; fyÞis imaginary and odd |
|
|
|
|
|
|
Solution: gðxÞ and dðxÞ are considered as 2-D functions gðxÞ 1 and dðxÞ 1, respectively. Then, gðxÞ can be written as
gðxÞ 1 ¼ uðx; yÞ ½dðxÞ 1& |
xÞdx1dy1 |
||
¼ |
ðð |
uðx1; y1Þdðx1 |
|
|
1 |
|
|
|
1 |
|
|
|
1 |
|
|
¼ |
ð |
uðx; yÞdy |
ð2:5-20Þ |
1
16 |
LINEAR SYSTEMS AND TRANSFORMS |
Computing the FT of both sides of Eq. (2.5-20) and using the convolution theorem and property 5 of separable functions gives
Gð fxÞdð fyÞ ¼ Uð fx; fyÞdð fyÞ
or
Gð fxÞ ¼ Uð fx; 0Þ
EXAMPLE 2.3 Find the FT of
gðx; yÞ ¼ uða1x þ b1y þ c1; a2x þ b2y þ c2Þ
as a function of the Fourier transform of uðx; yÞ.
Solution: |
|
ðð uða1x þ b1y þ c1; a2x þ b2y þ c2Þe j2pð f1xþf2yÞdxdy |
|
|||||||||
Gð fx; fyÞ ¼ |
|
|||||||||||
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
Letting x1 ¼ a1x þ b1y þ c1 gives |
|
1 |
þ b2y þ c2 e j2p fx |
a1 þfyy |
ja11j |
|||||||
Gð fx; fyÞ ¼ |
ðð u x1; a2 x1 |
a11 |
|
|||||||||
|
1 |
|
|
b y |
c |
|
|
|
|
x1 a1y c1 |
|
dx dy |
|
1 |
|
|
|
|
|
|
|
|
|
|
|
1 ¼ |
a |
2 |
|
a1 |
|
þ |
b |
2 |
y |
þ |
c |
2 |
gives |
|
Also letting y |
|
x1 b1y c1 |
|
|
|
|
|
|||||||
Gðfx; fyÞ ¼ jDj |
ðð |
uðx1; y1Þe j2p½x1fx0 þy1fy0 þT1fxþT2fy&dx1dy1 |
ð2:5-21Þ |
|||||||||||
|
|
|
1 |
1 |
|
|
|
|
|
|
|
|
|
|
1
where
D ¼ a2b1 a1b2
fx0 ¼ D1 ð a1fx þ a2fyÞ
fy0 ¼ 1 ðb1fx a1fyÞ D
T1 ¼ b1c2 b2c1
D
T2 ¼ a2c1 a1c2
D
PROPERTIES OF THE FOURIER TRANSFORM |
17 |
Equation (2.5-21) is the same as
Gðfx; fyÞ ¼ j1j e j2pðT1 fxþT2 fyÞUð fx0; fy0Þ
D
In other words, when the input signal is scaled, shifted, and skewed, its transform is also scaled, skewed, and linearly phase-shifted, but not shifted in position.
EXAMPLE 2.4 Find the FT of the ‘‘one-zero’’ function defined by
u x; y |
Þ ¼ |
1 |
h1ðxÞ < y < h2 |
x |
Þ |
; |
ð |
0 |
otherwise |
ð |
|
where h1ðxÞ and h2ðxÞ are given single-valued functions of x. Determine Uðfx; fyÞ and Uðfx; 0Þ.
Solution: uðx; yÞ is as shown in Figure 2.2. Its FT is given by
ðð1
Uðfx; fyÞ ¼ uðx; yÞe j 2pð fxxþfyyÞdxdy
1
1ð h2ðxÞ
¼ |
e j 2p fx xdx |
e j 2p fy ydy |
|
|
1 h1ðxÞ
Figure 2.2. A typical zero-one function.